- 2021-04-13 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
初中中考数学真题难题 汇编 轴对称
第六章 轴对称 第一节 轴对称 1.(2016娄底)从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 . 【考点】概率公式;轴对称图形;中心对称图形. 【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可. 【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个, ∴取到的图形既是中心对称图形又是轴对称图形的概率为, 故答案为:. 2.(2016娄底)如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为 13 . 【考点】翻折变换(折叠问题). 【分析】利用翻折变换的性质得出AD=CD,进而利用AD+CD=AB得出即可. 【解答】解:∵将△ABC沿直线DE折叠后,使得点A与点C重合, ∴AD=CD, ∵AB=7,BC=6, ∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13. 故答案为:13 3.(2016宁夏)如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A,B的坐标分别为(,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为 (,). . 【考点】翻折变换(折叠问题);坐标与图形性质. 【分析】作O′C⊥y轴于点C,首先根据点A,B的坐标分别为(,0),(0,1)得到∠BAO=30°,从而得出∠OBA=60°,然后根据Rt△AOB沿着AB对折得到Rt△AO′B,得到∠CBO′=60°,最后设BC=x,则OC′=x,利用勾股定理求得x的值即可求解. 【解答】解:如图,作O′C⊥y轴于点C, ∵点A,B的坐标分别为(,0),(0,1), ∴OB=1,OA=, ∴tan∠BAO==, ∴∠BAO=30°, ∴∠OBA=60°, ∵Rt△AOB沿着AB对折得到Rt△AO′B, ∴∠CBO′=60°, ∴设BC=x,则OC′=x, ∴x2+(x)2=1, 解得:x=(负值舍去), ∴OC=OB+BC=1+=, ∴点O′的坐标为(,). 故答案为:(,). 【点评】本题考查了翻折变换及坐标与图形的性质的知识,解题的关键是根据点A和点B的坐标确定三角形为特殊三角形,难度不大. 4.(2016济宁)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是( ) A. B. C. D. 【考点】概率公式;利用轴对称设计图案. 【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案. 【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有4个情况, ∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:. 故选B. 5.(2016聊城)如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为( ) A.115° B.120° C.130° D.140° 【考点】翻折变换(折叠问题). 【分析】根据折叠的性质和矩形的性质得出∠BFE=∠EFB',∠B'=∠B=90°,根据三角形内角和定理求出∠CFB'=50°,进而解答即可. 【解答】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处, ∴∠BFE=∠EFB',∠B'=∠B=90°, ∵∠2=40°, ∴∠CFB'=50°, ∴∠1+∠EFB'﹣∠CFB'=180°, 即∠1+∠1﹣50°=180°, 解得:∠1=115°, 故选A. 【点评】本题考查了矩形的性质,折叠的性质,三角形的内角和定理的应用,能综合运用性质进行推理和计算是解此题的关键,注意:折叠后的两个图形全等. 6.(2016资阳)如图,矩形ABCD与菱形EFGH的对角线均交于点O,且EG∥BC,将矩形折叠,使点C与点O重合,折痕MN恰好过点G若AB=,EF=2,∠H=120°,则DN的长为( ) A. B. C.﹣D.2﹣ 【考点】矩形的性质;菱形的性质;翻折变换(折叠问题). 【分析】延长EG交DC于P点,连接GC、FH,则△GCP为直角三角形,证明四边形OGCM为菱形,则可证OC=OM=CM=OG=,由勾股定理求得GP的值,再由梯形的中位线定理CM+DN=2GP,即可得出答案. 【解答】解:长EG交DC于P点,连接GC、FH;如图所示: 则CP=DP=CD=,△GCP为直角三角形, ∵四边形EFGH是菱形,∠EHG=120°, ∴GH=EF=2,∠OHG=60°,EG⊥FH, ∴OG=GH•sin60°=2×=, 由折叠的性质得:CG=OG=,OM=CM,∠MOG=∠MCG, ∴PG==, ∵OG∥CM, ∴∠MOG+∠OMC=180°, ∴∠MCG+∠OMC=180°, ∴OM∥CG, ∴四边形OGCM为平行四边形, ∵OM=CM, ∴四边形OGCM为菱形, ∴CM=OG=, 根据题意得:PG是梯形MCDN的中位线, ∴DN+CM=2PG=, ∴DN=﹣; 故选:C. 7.(2016新疆)如图,▱ABCD中,AB=2,AD=1,∠ADC=60°,将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕交CD边于点E. (1)求证:四边形BCED′是菱形; (2)若点P时直线l上的一个动点,请计算PD′+PB的最小值. 【考点】平行四边形的性质;菱形的判定;轴对称-最短路线问题;翻折变换(折叠问题). 【分析】(1)利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,进而利用平行四边形的判定方法得出四边形DAD′E是平行四边形,进而求出四边形BCED′是平行四边形,根据折叠的性质得到AD=AD′,然后又菱形的判定定理即可得到结论; (2)由四边形DAD′E是平行四边形,得到▱DAD′E是菱形,推出D与D′关于AE对称,连接BD交AE于P,则BD的长即为PD′+PB的最小值,过D作DG⊥BA于G,解直角三角形得到AG=,DG=,根据勾股定理即可得到结论. 【解答】证明:(1)∵将▱ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处, ∴∠DAE=∠D′AE,∠DEA=∠D′EA,∠D=∠AD′E, ∵DE∥AD′, ∴∠DEA=∠EAD′, ∴∠DAE=∠EAD′=∠DEA=∠D′EA, ∴∠DAD′=∠DED′, ∴四边形DAD′E是平行四边形, ∴DE=AD′, ∵四边形ABCD是平行四边形, ∴AB=DC,AB∥DC, ∴CE=D′B,CE∥D′B, ∴四边形BCED′是平行四边形; ∵AD=AD′, ∴▱DAD′E是菱形, (2)∵四边形DAD′E是菱形, ∴D与D′关于AE对称, 连接BD交AE于P,则BD的长即为PD′+PB的最小值, 过D作DG⊥BA于G, ∵CD∥AB, ∴∠DAG=∠CDA=60°, ∵AD=1, ∴AG=,DG=, ∴BG=, ∴BD==, ∴PD′+PB的最小值为. 【点评】本题考查了平行四边形的性质,最短距离问题,勾股定理,菱形的判定和性质,正确的作出辅助线是解题的关键. 8.(2016金华)如图,Rt△ABC纸片中,∠C=90°,AC=6,BC=8,点D在边BC 上,以AD为折痕△ABD折叠得到△AB′D,AB′与边BC交于点E.若△DEB′为直角三角形,则BD的长是 2或5 . 【考点】翻折变换(折叠问题). 【分析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB′=10,DB=DB′,接下来分为∠B′DE=90°和∠B′ED=90°,两种情况画出图形,设DB=DB′=x,然后依据勾股定理列出关于x的方程求解即可. 【解答】解:∵Rt△ABC纸片中,∠C=90°,AC=6,BC=8, ∴AB=10, ∵以AD为折痕△ABD折叠得到△AB′D, ∴BD=DB′,AB′=AB=10. 如图1所示:当∠B′DE=90°时,过点B′作B′F⊥AF,垂足为F. 设BD=DB′=x,则AF=6+x,FB′=8﹣x. 在Rt△AFB′中,由勾股定理得:AB′2=AF2+FB′2,即(6+x)2+(8﹣x)2=102. 解得:x1=2,x2=0(舍去). ∴BD=2. 如图2所示:当∠B′ED=90°时,C与点E重合. ∵AB′=10,AC=6, ∴B′E=4. 设BD=DB′=x,则CD=8﹣x. 在Rt△′BDE中,DB′2=DE2+B′E2,即x2=(8﹣x)2+42. 解得:x=5. ∴BD=5. 综上所述,BD的长为2或5. 故答案为:2或5. 【点评】本题主要考查的是翻折的性质、勾股定理的应用,根据勾股定理列出关于x的方程是解题的关键. 9.(2016温州)如图,一张三角形纸片ABC,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A落在C处;将纸片展平做第二次折叠,使点B落在C处;再将纸片展平做第三次折叠,使点A落在B处.这三次折叠的折痕长依次记为a,b,c,则a,b,c的大小关系是( ) A.c>a>b B.b>a>c C.c>b>a D.b>c>a 【考点】翻折变换(折叠问题). 【分析】(1)图1,根据折叠得:DE是线段AC的垂直平分线,由中位线定理的推论可知:DE是△ABC的中位线,得出DE的长,即a的长; (2)图2,同理可得:MN是△ABC的中位线,得出MN的长,即b的长; (3)图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长. 【解答】解:第一次折叠如图1,折痕为DE, 由折叠得:AE=EC=AC=×4=2,DE⊥AC ∵∠ACB=90° ∴DE∥BC ∴a=DE=BC=×3= 第二次折叠如图2,折痕为MN, 由折叠得:BN=NC=BC=×3=,MN⊥BC ∵∠ACB=90° ∴MN∥AC ∴b=MN=AC=×4=2 第三次折叠如图3,折痕为GH, 由勾股定理得:AB==5 由折叠得:AG=BG=AB=×5=,GH⊥AB ∴∠AGH=90° ∵∠A=∠A,∠AGH=∠ACB ∴△ACB∽△AGH ∴= ∴= ∴GH=,即c= ∵2>> ∴b>c>a 故选(D) 10.(2016重庆)如图,在正方形ABCD中,AB=6,点E在边CD上,DE=DC,连接AE,将△ADE沿AE翻折,点D落在点F处,点O是对角线BD的中点,连接OF并延长OF交CD于点G,连接BF,BG,则△BFG的周长是________. (第18题) (答案图) 解:延长EF,交BC于点H,则可证得△ABH全等△AFH,所以BH=FH, 在△HCE中,令FH=x,则HE=x+2,EC=4,HC=6-x,由勾股定理可得x=3, 所以H是BC的中点,所以OH=3。 再由△OHF相似△GEF,OH=FH=3,可得EG=EF=2,所以GC=2,所以BG=2, 在△OJG中,OJ=3,JG=1,由勾股定理可得OG=,所以FG=。 在△HCE中,HI:HC=HF:HE+FI:EC,可求得HI=,FI=,所以BI=, 在△BFI中可求得BF=。 所以C△BFG=BF+FG+BG=。 11.(2016福建竞赛)在平面直角坐标系中,已知点,点在轴正半轴上且。将沿直线折叠得,则点的坐标为( ) A. B. C. D. 【答案】 B 【解答】如图,设轴于点。 依题意,,。 所以,,,。 因此,点的坐标为。 第一节 等腰三角形 1.(2016怀化)等腰三角形的两边长分别为4cm和8cm,则它的周长为( ) A.16cm B.17cm C.20cm D.16cm或20cm 【考点】等腰三角形的性质;三角形三边关系. 【分析】根据等腰三角形的性质,本题要分情况讨论.当腰长为4cm或是腰长为8cm两种情况. 【解答】解:等腰三角形的两边长分别为4cm和8cm, 当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系; 当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm. 故选C. 2.(2016怀化)如图,已知AD=BC,AC=BD. (1)求证:△ADB≌△BCA; (2)OA与OB相等吗?若相等,请说明理由. 【考点】全等三角形的判定与性质;等腰三角形的判定. 【分析】(1)根据SSS定理推出全等即可; (2)根据全等得出∠OAB=∠OBA,根据等角对等边得出即可. 【解答】(1)证明:∵在△ADB和△BCA中, , ∴△ADB≌△BCA(SSS); (2)解:OA=OB, 理由是:∵△ADB≌△BCA, ∴∠ABD=∠BAC, ∴OA=OB. 3.(2016邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是( ) A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC 【考点】等腰三角形的性质. 【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC>∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断. 【解答】解:∵AD=BD, ∴∠A=∠ABD, ∴∠ABC>∠A,所以C选项和D选项错误; ∴AC>BC,所以A选项正确;B选项错误. 故选A. 4.(2016泰安)如图,在▱ABCD中,AB=6,BC=8,∠C的平分线交AD于E,交BA的延长线于F,则AE+AF的值等于( ) A.2 B.3 C.4 D.6 【分析】由平行四边形的性质和角平分线得出∠F=∠FCB,证出BF=BC=8,同理:DE=CD=6,求出AF=BF﹣AB=2,AE=AD﹣DE=2,即可得出结果. 【解答】解:∵四边形ABCD是平行四边形, ∴AB∥CD,AD=BC=8,CD=AB=6, ∴∠F=∠DCF, ∵∠C平分线为CF, ∴∠FCB=∠DCF, ∴∠F=∠FCB, ∴BF=BC=8, 同理:DE=CD=6, ∴AF=BF﹣AB=2,AE=AD﹣DE=2, ∴AE+AF=4; 故选:C. 【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明三角形是等腰三角形是解决问题的关键. 5.(2016泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( ) A.44° B.66° C.88° D.92° 【分析】根据等腰三角形的性质得到∠A=∠B,证明△AMK≌△BKN,得到∠AMK=∠BKN,根据三角形的外角的性质求出∠A=∠MKN=44°,根据三角形内角和定理计算即可. 【解答】解:∵PA=PB, ∴∠A=∠B, 在△AMK和△BKN中, , ∴△AMK≌△BKN, ∴∠AMK=∠BKN, ∵∠MKB=∠MKN+∠NKB=∠A+∠AMK, ∴∠A=∠MKN=44°, ∴∠P=180°﹣∠A﹣∠B=92°, 故选:D. 【点评】本题考查的是等腰三角形的性质、全等三角形的判定和性质、三角形的外角的性质,掌握等边对等角、全等三角形的判定定理和性质定理、三角形的外角的性质是解题的关键. 6.(2016泰安)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn﹣1Bn顶点Bn的横坐标为 2n+1﹣2 . 【分析】先求出B1、B2、B3…的坐标,探究规律后,即可根据规律解决问题. 【解答】解:由题意得OA=OA1=2, ∴OB1=OA1=2, B1B2=B1A2=4,B2A3=B2B3=8, ∴B1(2,0),B2(6,0),B3(14,0)…, 2=22﹣2,6=23﹣2,14=24﹣2,… ∴Bn的横坐标为2n+1﹣2. 故答案为 2n+1﹣2. 【点评】本题考查规律型:点的坐标、等腰直角三角形的性质等知识,解题的关键是从特殊到一般,探究规律,利用规律解决问题,属于中考常考题型. 7.(2016泰安)(1)已知:△ABC是等腰三角形,其底边是BC,点D在线段AB上,E是直线BC上一点,且∠DEC=∠DCE,若∠A=60°(如图①).求证:EB=AD; (2)若将(1)中的“点D在线段AB上”改为“点D在线段AB的延长线上”,其它条件不变(如图②),(1)的结论是否成立,并说明理由; (3)若将(1)中的“若∠A=60°”改为“若∠A=90°”,其它条件不变,则的值是多少?(直接写出结论,不要求写解答过程) 【分析】(1)作DF∥BC交AC于F,由平行线的性质得出∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,证明△ABC是等边三角形,得出∠ABC=∠ACB=60°,证出△ADF是等边三角形,∠DFC=120°,得出AD=DF,由已知条件得出∠FDC=∠DEC,ED=CD,由AAS证明△DBE≌△CFD,得出EB=DF,即可得出结论; (2)作DF∥BC交AC的延长线于F,同(1)证出△DBE≌△CFD,得出EB=DF,即可得出结论; (3)作DF∥BC交AC于F,同(1)得:△DBE≌△CFD,得出EB=DF,证出△ADF是等腰直角三角形,得出DF=AD,即可得出结果. 【解答】(1)证明:作DF∥BC交AC于F,如图1所示: 则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE, ∵△ABC是等腰三角形,∠A=60°, ∴△ABC是等边三角形, ∴∠ABC=∠ACB=60°, ∴∠DBE=120°,∠ADF=∠AFD=60°=∠A, ∴△ADF是等边三角形,∠DFC=120°, ∴AD=DF, ∵∠DEC=∠DCE, ∴∠FDC=∠DEC,ED=CD, 在△DBE和△CFD中,, ∴△DBE≌△CFD(AAS), ∴EB=DF, ∴EB=AD; (2)解:EB=AD成立;理由如下: 作DF∥BC交AC的延长线于F,如图2所示: 同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD, 又∵∠DBE=∠DFC=60°, ∴在△DBE和△CFD中,, ∴△DBE≌△CFD(AAS), ∴EB=DF, ∴EB=AD; (3)解: =;理由如下: 作DF∥BC交AC于F,如图3所示: 同(1)得:△DBE≌△CFD(AAS), ∴EB=DF, ∵△ABC是等腰直角三角形,DF∥BC, ∴△ADF是等腰直角三角形, ∴DF=AD, ∴=, ∴=. 【点评】本题是三角形综合题目,考查了等边三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质、等腰直角三角形的判定与性质、平行线的性质等知识;本题综合性强,有一定难度,证明三角形全等是解决问题的关键. 8.(2016资阳)如图,在3×3的方格中,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是 . 【考点】概率公式;等腰三角形的判定. 【分析】根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,即可得出答案. 【解答】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形, 故P(所作三角形是等腰三角形)=; 故答案为:. 9.(2016福建竞赛)如图,为等腰三角形内一点,过分别作三条边、、的垂线,垂足分别为、、。已知,,且。则四边形的面积为( ) A.10 B.15 C. D. 【答案】 C (第4题 图) 【解答】如图,连结,,。 易知。又 ,。 (第4题答题图) ∴ ,。 由,知点在的平分线上,、、三点共线。 ∴ ,。 ∴ 。 ∴ 。 10(2016福建竞赛)如图,是等腰直角三角形,,点在线段上(与、不重合),点在射线上,且。求证:。 【答案】如图,作点关于直线的对称点,连结、、,,则。 ∵ 是等腰直角三角形,,且, ∴ , 。 ∴ 。 又,。 ∴ 。 ∴ ,。 又由,知 。 ∴ 。 又, ∴ 。 另解:如图,沿翻折得,则。 ∴ ,,,。 ∵ , ∴ 。 又,。 ∴ 。 ∴ ,,。 ∴ 。 查看更多