专题01+集合与常用逻辑用语(仿真押题)-2019年高考数学(理)命题猜想与仿真押题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

专题01+集合与常用逻辑用语(仿真押题)-2019年高考数学(理)命题猜想与仿真押题

‎1.设集合A={x|-x2-x+2<0},B={x|2x-5>0},则集合A与B的关系是(  )‎ A.B⊆A B.B⊇A C.B∈A D.A∈B 解析:因为A={x|-x2-x+2<0}={x|x>1或x<-2},B={x|2x-5>0}={x|x>},所以B⊆A,故选A.‎ 答案:A ‎2.设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA等于(  )‎ A. ∅ B.{2} C.{5} D.{2,5}‎ 答案 B 解析 A={x∈N|x2≥5}={x∈N|x≥},‎ 故∁UA={x∈N|2≤x<}={2},故选B.‎ ‎3.已知集合A={x|y=},B={x|x2<9,x∈Z},则A∩B等于(  )‎ A.[-1,2] B.{0,1}‎ C.{0,2} D.{-1,0,1,2}‎ 答案 D 解析 由2+x-x2≥0得-1≤x≤2,∴A=[-1,2],由题意得B={-2,-1,0,1,2},∴A∩B={-1,0,1,2},故选D.‎ ‎4.设命题p:f(x)=ln x+2x2+mx+1在(0,+∞)内单调递增,命题q:m≥-5,则p是q的(  )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 答案 A 解析 f′(x)=+4x+m(x>0),‎ 由f′(x)=+4x+m≥0,得m≥-.‎ 因为+4x≥2=4,所以-≤-4,所以m≥-4,即p:m≥-4.所以p是q的充分不必要条件,故选A. ‎ 答案:A ‎21.定义一种新的集合运算△:A△B={x|x∈A,且x∉B},若集合A={x|x2-4x+3<0},B={x|2≤x≤4},则按运算△,B△A=(  )‎ A.{x|20,则綈p:∀x∈R,x2-x-1<0‎ C.若p∧q为假命题,则p,q均为假命题 D.命题“若α=,则sin α=”的否命题是“若α≠,则sin α≠”‎ 解析:f(0)=0,函数f(x)不一定是奇函数,如f(x)=x2,所以A错误;若p:∃x0∈R,x-x0-1>0,则綈p:∀x∈R,x2-x-1≤0,所以B错误;p,q只要有一个是假命题,则p∧q为假命题,所以C错误;否命题是将原命题的条件和结论都否定,D正确.‎ 答案:D ‎23.已知命题p:∀x∈R,2x>0;命题q:在曲线y=cos x上存在斜率为的切线,则下列判断正确的是(  )‎ A.p是假命题 B.q是真命题 C.p∧(綈q)是真命题 D.(綈p)∧q是真命题 解析:易知,命题p是真命题,对于命题q,y′=-sin x∈[-1,1],而∉[-1,1],故命题q为假命题,所以綈q为真命题,p∧(綈q)是真命题.故选C.‎ 答案:C ‎24.命题p:∃a∈,使得函数f(x)=在上单调递增;命题q:函数g(x)=x+log2x在区间上无零点.则下列命题中是真命题的是(  )‎ A.綈p B.p∧q C.(綈p)∨q D.p∧(綈q)‎ 解析:设h(x)=x+.当a=-时,函数h(x)为增函数,且h=>0,则函数f(x)在上必单调递增,即p是真命题;∵g=-<0,g(1)=1>0,∴g(x)在上有零点,即q是假命题,故选D.‎ 答案:D ‎25.若a,b∈R,则>成立的一个充分不必要条件是(  )‎ A.aa C.ab>0 D.ab(a-b)<0‎ 解析:-==,选项A可以推出>.故选A.‎ 答案:A ‎ ‎26.不等式组的解集记为D,有下面四个命题:‎ p1:∀(x,y)∈D,x+2y≥-2;‎ p2:∃(x,y)∈D,x+2y≥2;‎ p3:∀(x,y)∈D,x+2y≤3;‎ p4:∃(x,y)∈D,x+2y≤-1.‎ 其中的真命题是(  )‎ A.p2,p3 B.p1,p2‎ C.p1,p4 D.p1,p3‎ 解析:不等式组表示的区域D如图中阴影部分所示,设目标函数z=x+2y,根据目标函数的几何意义可知,目标函数在点A(2,-1)处取得最小值,且zmin=2-2=0,即x+2y的取值范围是[0,+∞),故命题p1,p2为真,命题p3,p4为假.故选B.‎ 答案:B ‎27.已知集合A={x|2x2+3x-2<0},集合B={x|x>a},如果“x∈A”是“x∈B”的充分不必要条件,则实数a的取值范围是(  )‎ A.a≤-2 B.a<-2‎ C.a>-2 D.a≥-2‎ 解析:由2x2+3x-2<0,解得-2
查看更多