- 2021-04-13 发布 |
- 37.5 KB |
- 17页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018版高考文科数学(北师大版)一轮文档讲义:章9-2两条直线的位置关系
第2讲 两条直线的位置关系 最新考纲 1.能根据两条直线的斜率判定这两条直线平行或垂直;2.能用解方程组的方法求两条相交直线的交点坐标;3.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离. 知 识 梳 理 1.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2.特别地,当直线l1,l2的斜率都不存在时,l1与l2平行. (2)两条直线垂直 如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1,当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 2.两直线相交 直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0的公共点的坐标与方程组的解一一对应. 相交⇔方程组有唯一解,交点坐标就是方程组的解; 平行⇔方程组无解; 重合⇔方程组有无数个解. 3.距离公式 (1)两点间的距离公式 平面上任意两点A(x1,y1),B(x2,y2)间的距离公式为|AB|=. 特别地,原点O(0,0)与任一点P(x,y)的距离|OP|=. (2)点到直线的距离公式 平面上任意一点P0(x0,y0)到直线l:Ax+By+C=0的距离d=. (3)两条平行线间的距离公式 一般地,两条平行直线l1:Ax+By+C1=0,l2:Ax+By+C2=0间的距离d=. 诊 断 自 测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)当直线l1和l2的斜率都存在时,一定有k1=k2⇒l1∥l2.( ) (2)如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.( ) (3)若两直线的方程组成的方程组有唯一解,则两直线相交.( ) (4)已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1,B1,C1,A2,B2,C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.( ) (5)直线外一点与直线上一点的距离的最小值就是点到直线的距离.( ) 解析 (1)两直线l1,l2有可能重合. (2)如果l1⊥l2,若l1的斜率k1=0,则l2的斜率不存在. 答案 (1)× (2)× (3)√ (4)√ (5)√ 2.(2016·北京卷)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为( ) A.1 B.2 C. D.2 解析 圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y +3=0,则圆心到直线的距离d==. 答案 C 3.(2017·郑州调研)直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则m=( ) A.2 B.-3 C.2或-3 D.-2或-3 解析 直线2x+(m+1)y+4=0与直线mx+3y-2=0平行,则有=≠,故m=2或-3.故选C. 答案 C 4.(必修2P76练习2(2)改编)直线2x+2y+1=0,x+y+2=0之间的距离是________. 解析 先将2x+2y+1=0化为x+y+=0, 则两平行线间的距离为d==. 答案 5.已知P(-2,m),Q(m,4),且直线PQ垂直于直线x+y+1=0,则m=________. 解析 由题意知 =1,所以m-4=-2-m,所以m=1. 答案 1 考点一 两直线的平行与垂直 【例1】 (1)已知两条直线l1:(a-1)x+2y+1=0,l2:x+ay+3=0平行,则a等于( ) A.-1 B.2 C.0或-2 D.-1或2 (2)已知两直线方程分别为l1:x+y=1,l2:ax+2y=0,若l1⊥l2,则a=________. 解析 (1)若a=0,两直线方程分别为-x+2y+1=0和x=-3,此时两直线相交,不平行,所以a≠0;当a≠0时,两直线平行,则有=≠,解得a=-1或2. (2)因为l1⊥l2,所以k1k2=-1. 即(-1)·=-1,解得a=-2. 答案 (1)D (2)-2 规律方法 (1)当含参数的直线方程为一般式时,若要表示出直线的斜率,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况,同时还要注意x,y的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论. 【训练1】 (1)(2017·安康检测)若直线l1:(a-1)x+y-1=0和直线l2:3x+ay+2=0垂直,则实数a的值为( ) A. B. C. D. (2)(2017·西安模拟)已知a,b为正数,且直线ax+by-6=0与直线2x+(b-3)y+5=0平行,则2a+3b的最小值为________. 解析 (1)由已知得3(a-1)+a=0,解得a=. (2)由两直线平行可得,a(b-3)=2b,即2b+3a=ab,+=1.又a,b为正数,所以2a+3b=(2a+3b)·=13++≥13+2=25,当且仅当a=b=5时取等号,故2a+3b的最小值为25. 答案 (1)D (2)25 考点二 两直线的交点与距离问题 【例2】 (1)已知直线y=kx+2k+1与直线y=-x+2的交点位于第一象限,则实数k的取值范围是________. (2)直线l过点P(-1,2)且到点A(2,3)和点B(-4,5)的距离相等,则直线l的方程为________. 解析 (1)法一 由方程组 解得 (若2k+1=0,即k=-,则两直线平行) ∴交点坐标为.又∵交点位于第一象限, ∴解得-<k<. 法二 如图,已知直线y=-x+2与x轴、y轴分别交于点A(4,0),B(0,2). 而直线方程y=kx+2k+1可变形为y-1=k(x+2),表示这是一条过定点P(-2,1),斜率为k的动直线. ∵两直线的交点在第一象限, ∴两直线的交点必在线段AB上(不包括端点), ∴动直线的斜率k需满足kPA<k<kPB. ∵kPA=-,kPB=. ∴-<k<. (2)法一 当直线l的斜率存在时,设直线l的方程为y-2=k(x+1),即kx-y+k+2=0. 由题意知=, 即|3k-1|=|-3k-3|,∴k=-. ∴直线l的方程为y-2=-(x+1), 即x+3y-5=0. 当直线l的斜率不存在时,直线l的方程为x=-1,也符合题意. 法二 当AB∥l时,有k=kAB=-,直线l的方程为y-2=-(x+1),即x+3y-5=0. 当l过AB中点时,AB的中点为(-1,4). ∴直线l的方程为x=-1. 故所求直线l的方程为x+3y-5=0或x=-1. 答案 (1) (2)x+3y-5=0或x=-1 规律方法 (1)求过两直线交点的直线方程的方法 求过两直线交点的直线方程,先解方程组求出两直线的交点坐标,再结合其他条件写出直线方程. (2)利用距离公式应注意:①点P(x0,y0)到直线x=a的距离d=|x0-a|,到直线y=b的距离d=|y0-b|;②两平行线间的距离公式要把两直线方程中x,y的系数化为相等. 【训练2】 (1)曲线y=2x-x3在横坐标为-1的点处的切线为l,则点P(3,2)到直线l的距离为( ) A. B. C. D. (2)(2017·河北省“五个一名校联盟”质检)若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2间的距离为( ) A. B. C. D. 解析 (1)曲线y=2x-x3上横坐标为-1的点的纵坐标为-1,故切点坐标为(-1,-1).切线斜率为k=y′|x=-1=2-3×(-1)2=-1,故切线l的方程为y-(-1)=-1×[x-(-1)],整理得x+y+2=0.由点到直线的距离公式,得点P(3,2)到直线l的距离为=. (2)因为l1∥l2,所以=≠,所以解得a=-1,所以l1:x-y+6=0,l2:x-y+=0,所以l1与l2之间的距离d==,故选B. 答案 (1)A (2)B 考点三 对称问题 【例3】 已知直线l:2x-3y+1=0,点A(-1,-2).求: (1)点A关于直线l的对称点A′的坐标; (2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程; (3)直线l关于点A(-1,-2)对称的直线l′的方程. 解 (1)设A′(x,y),再由已知 解得∴A′. (2)在直线m上取一点,如M(2,0),则M(2,0)关于直线l的对称点必在m′上. 设对称点为M′(a,b), 则解得M′. 设m与l的交点为N,则由得N(4,3). 又∵m′经过点N(4,3), ∴由两点式得直线方程为9x-46y+102=0. (3)法一 在l:2x-3y+1=0上任取两点, 如M(1,1),N(4,3), 则M,N关于点A的对称点M′,N′均在直线l′上. 易知M′(-3,-5),N′(-6,-7),由两点式可得l′的方程为2x-3y-9=0. 法二 设P(x,y)为l′上任意一点, 则P(x,y)关于点A(-1,-2)的对称点为 P′(-2-x,-4-y), ∵P′在直线l上,∴2(-2-x)-3(-4-y)+1=0, 即2x-3y-9=0. 规律方法 (1)解决点关于直线对称问题要把握两点,点M与点N关于直线l对称,则线段MN的中点在直线l上,直线l与直线MN垂直. (2)如果直线或点关于点成中心对称问题,则只需运用中点公式就可解决问题. (3)若直线l1,l2关于直线l对称,则有如下性质:①若直线l1与l2相交,则交点在直线l上;②若点B在直线l1上,则其关于直线l的对称点B′在直线l2上. 【训练3】 光线沿直线l1:x-2y+5=0射入,遇直线l:3x-2y+7=0后反射,求反射光线所在的直线方程. 解 法一 由 得 ∴反射点M的坐标为(-1,2). 又取直线x-2y+5=0上一点P(-5,0),设P关于直线l的对称点P′(x0,y0), 由PP′⊥l可知,kPP′=-=. 而PP′的中点Q的坐标为,又Q点在l上, ∴3·-2·+7=0. 由得 根据直线的两点式方程可得所求反射光线所在直线的方程为29x-2y+33=0. 法二 设直线x-2y+5=0上任意一点P(x0,y0)关于直线l的对称点为P′(x,y),则=-, 又PP′的中点Q在l上,∴3×-2×+7=0,由 可得P点的横、纵坐标分别为 x0=,y0=, 代入方程x-2y+5=0中,化简得29x-2y+33=0, ∴所求反射光线所在的直线方程为29x-2y+33=0. [思想方法] 1.两直线的位置关系要考虑平行、垂直和重合.对于斜率都存在且不重合的两条直线l1,l2,l1∥l2⇔k1=k2;l1⊥l2⇔k1·k2=-1.若有一条直线的斜率不存在,那么另一条直线的斜率一定要特别注意. 2.对称问题一般是将线与线的对称转化为点与点的对称.利用坐标转移法解决问题. [易错防范] 1.在判断两条直线的位置关系时,首先应分析直线的斜率是否存在.若两条直线都有斜率,可根据判定定理判断,若直线无斜率,要单独考虑. 2.在运用两平行直线间的距离公式d=时,一定要注意将两方程中x,y的系数分别化为相同的形式. 基础巩固题组 (建议用时:30分钟) 一、选择题 1.直线2x+y+m=0和x+2y+n=0的位置关系是( ) A.平行 B.垂直 C.相交但不垂直 D.不能确定 解析 直线2x+y+m=0的斜率k1=-2,直线x+2y+n=0的斜率为k2=-,则k1≠k2,且k1k2≠-1.故选C. 答案 C 2.(2017·上饶模拟)“a=-1”是“直线ax+3y+3=0和直线x+(a-2)y+1=0平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 解析 依题意得,直线ax+3y+3=0和直线x+(a-2)y+1=0平行的充要条件是解得a=-1,因此选C. 答案 C 3.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为( ) A.19x-9y=0 B.9x+19y=0 C.19x-3y=0 D.3x+19y=0 解析 法一 由得 则所求直线方程为:y=x=-x,即3x+19y=0. 法二 设直线方程为x-3y+4+λ(2x+y+5)=0, 即(1+2λ)x-(3-λ)y+4+5λ=0,又直线过点(0,0), 所以(1+2λ)·0-(3-λ)·0+4+5λ=0, 解得λ=-,故所求直线方程为3x+19y=0. 答案 D 4.直线x-2y+1=0关于直线x=1对称的直线方程是( ) A.x+2y-1=0 B.2x+y-1=0 C.x+2y+3=0 D.x+2y-3=0 解析 设所求直线上任一点(x,y),则它关于直线x=1的对称点(2-x,y)在直线x-2y+1=0上,即2-x-2y+1=0,化简得x+2y-3=0. 答案 D 5.(2017·安庆模拟)若直线l1:x+3y+m=0(m>0)与直线l2:2x+6y-3=0的距离为,则m=( ) A.7 B. C.14 D.17 解析 直线l1:x+3y+m=0(m>0),即2x+6y+2m=0,因为它与直线l2:2x+6y-3=0的距离为,所以=,求得m=,故选B. 答案 B 6.平面直角坐标系中直线y=2x+1关于点(1,1)对称的直线方程是( ) A.y=2x-1 B.y=-2x+1 C.y=-2x+3 D.y=2x-3 解析 在直线y=2x+1上任取两个点A(0,1),B(1,3),则点A关于点(1,1)对称的点为M(2,1),点B关于点(1,1)对称的点为N(1,-1).由两点式求出对称直线MN的方程为= ,即y=2x-3,故选D. 答案 D 7.(2017·成都调研)已知直线l1过点(-2,0)且倾斜角为30°,直线l2过点(2,0)且与直线l1垂直,则直线l1与直线l2的交点坐标为( ) A.(3,) B.(2,) C.(1,) D. 解析 直线l1的斜率为k1=tan 30°=,因为直线l2与直线l1垂直,所以k2=-=-,所以直线l1的方程为y=(x+2),直线l2的方程为y=-(x-2).两式联立,解得即直线l1与直线l2的交点坐标为(1,).故选C. 答案 C 8.从点(2,3)射出的光线沿与向量a=(8,4)平行的直线射到y轴上,则反射光线所在的直线方程为( ) A.x+2y-4=0 B.2x+y-1=0 C.x+6y-16=0 D.6x+y-8=0 解析 由直线与向量a=(8,4)平行知:过点(2,3)的直线的斜率k=,所以直线的方程为y-3=(x-2),其与y轴的交点坐标为(0,2),又点(2,3)关于y轴的对称点为(-2,3),所以反射光线过点(-2,3)与(0,2),由两点式知A正确. 答案 A 二、填空题 9.点(2,1)关于直线x-y+1=0的对称点为________. 解析 设对称点为(x0,y0),则 解得故所求对称点为(0,3). 答案 (0,3) 10.若三条直线y=2x,x+y=3,mx+2y+5=0相交于同一点,则m的值为________. 解析 由得 ∴点(1,2)满足方程mx+2y+5=0, 即m×1+2×2+5=0,∴m=-9. 答案 -9 11.(2017·沈阳检测)已知直线l过点P(3,4)且与点A(-2,2),B(4,-2)等距离,则直线l的方程为________. 解析 显然直线l的斜率不存在时,不满足题意; 设所求直线方程为y-4=k(x-3), 即kx-y+4-3k=0, 由已知,得=, ∴k=2或k=-. ∴所求直线l的方程为2x-y-2=0或2x+3y-18=0. 答案 2x+3y-18=0或2x-y-2=0 12.(2016·长沙一调)已知入射光线经过点M(-3,4),被直线l:x-y+3=0反射,反射光线经过点N(2,6),则反射光线所在直线的方程为________. 解析 设点M(-3,4)关于直线l:x-y+3=0的对称点为M′(a,b ),则反射光线所在直线过点M′, 所以解得a=1,b=0. 又反射光线经过点N(2,6), 所以所求直线的方程为=, 即6x-y-6=0. 答案 6x-y-6=0 能力提升题组 (建议用时:15分钟) 13.(2017·洛阳模拟)在直角坐标平面内,过定点P的直线l:ax+y-1=0与过定点Q的直线m:x-ay+3=0相交于点M,则|MP|2+|MQ|2的值为( ) A. B. C.5 D.10 解析 由题意知P(0,1),Q(-3,0), ∵过定点P的直线ax+y-1=0与过定点Q的直线x-ay+3=0垂直,∴M位于以PQ为直径的圆上, ∵|PQ|==,∴|MP|2+|MQ|2=|PQ|2=10,故选D. 答案 D 14.如图所示,已知两点A(4,0),B(0,4),从点P(2,0)射出的光线经直线AB反射后再射到直线OB上,最后经直线OB反射后又回到P点,则光线所经过的路程是( ) A.2 B.6 C.3 D.2 解析 易得AB所在的直线方程为x+y=4,由于点P关于直线AB对称的点为A1(4,2),点P关于y轴对称的点为A2(-2,0),则光线所经过的路程即A1(4,2)与A2(-2,0)两点间的距离. 于是|A1A2|==2. 答案 A 15.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|PA|·|PB|的最大值是________. 解析 易知A(0,0),B(1,3)且两直线互相垂直, 即△APB为直角三角形, ∴|PA|·|PB|≤===5. 当且仅当|PA|=|PB|时,等号成立. 答案 5 16.在平面直角坐标系内,到点A(1,2),B(1,5),C(3,6),D(7,-1)的距离之和最小的点的坐标是________. 解析 设平面上任一点M,因为|MA|+|MC|≥|AC|,当且仅当A,M,C共线时取等号,同理|MB|+|MD|≥|BD|,当且仅当B,M,D共线时取等号,连接AC,BD交于一点M,若|MA|+|MC|+|MB|+|MD|最小,则点M为所求.∵kAC==2, ∴直线AC的方程为y-2=2(x-1), 即2x-y=0.① 又∵kBD==-1, ∴直线BD的方程为y-5=-(x-1), 即x+y-6=0.② 由①②得解得所以M(2,4). 答案 (2,4) 特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.查看更多