- 2021-04-12 发布 |
- 37.5 KB |
- 3页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高中数学必修1课时练习及详解第1章1_2_2第一课时知能优化训练
1.下列各图中,不能是函数f(x)图象的是( ) 解析:选C.结合函数的定义知,对A、B、D,定义域中每一个x都有唯一函数值与之对应;而对C,对大于0的x而言,有两个不同值与之对应,不符合函数定义,故选C. 2.若f()=,则f(x)等于( ) A.(x≠-1) B.(x≠0) C.(x≠0且x≠-1) D.1+x(x≠-1) 解析:选C.f()==(x≠0), ∴f(t)=(t≠0且t≠-1), ∴f(x)=(x≠0且x≠-1). 3.已知f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)=( ) A.3x+2 B.3x-2 C.2x+3 D.2x-3 解析:选B.设f(x)=kx+b(k≠0), ∵2f(2)-3f(1)=5,2f(0)-f(-1)=1, ∴,∴,∴f(x)=3x-2. 4.已知f(2x)=x2-x-1,则f(x)=________. 解析:令2x=t,则x=, ∴f(t)=2--1,即f(x)=--1. 答案:--1 1.下列表格中的x与y能构成函数的是( ) A. x 非负数 非正数 y 1 -1 B. x 奇数 0 偶数 y 1 0 -1 C. x 有理数 无理数 y 1 -1 D. x 自然数 整数 有理数 y 1 0 -1 解析:选C.A中,当x=0时,y=±1;B中0是偶数,当x=0时,y=0或y=-1;D中自然数、整数、有理数之间存在包含关系,如x=1∈N(Z,Q),故y的值不唯一,故A、B、D均不正确. 2.若f(1-2x)=(x≠0),那么f()等于( ) A.1 B.3 C.15 D.30 解析:选C.法一:令1-2x=t,则x=(t≠1), ∴f(t)=-1,∴f()=16-1=15. 法二:令1-2x=,得x=, ∴f()=16-1=15. 3.设函数f(x)=2x+3,g(x+2)=f(x),则g(x)的表达式是( ) A.2x+1 B.2x-1 C.2x-3 D.2x+7 解析:选B.∵g(x+2)=2x+3=2(x+2)-1, ∴g(x)=2x-1. 4.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程,在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中较符合此学生走法的是( ) 解析:选D.由于纵轴表示离学校的距离,所以距离应该越来越小,排除A、C,又一开始跑步,速度快,所以D符合. 5.如果二次函数的二次项系数为1且图象开口向上且关于直线x=1对称,且过点(0,0),则此二次函数的解析式为( ) A.f(x)=x2-1 B.f(x)=-(x-1)2+1 C.f(x)=(x-1)2+1 D.f(x)=(x-1)2-1 解析:选D.设f(x)=(x-1)2+c, 由于点(0,0)在函数图象上, ∴f(0)=(0-1)2+c=0, ∴c=-1,∴f(x)=(x-1)2-1. 6.已知正方形的周长为x,它的外接圆的半径为y,则y关于x的函数解析式为( ) A.y=x(x>0) B.y=x(x>0) C.y=x(x>0) D.y=x(x>0) 解析:选C.设正方形的边长为a,则4a=x,a=,其外接圆的直径刚好为正方形的一条对角线长.故a=2y,所以y=a=×=x. 7.已知f(x)=2x+3,且f(m)=6,则m等于________. 解析:2m+3=6,m=. 答案: 8. 如图,函数f(x)的图象是曲线OAB,其中点O,A,B的坐标分别为(0,0),(1,2),(3,1),则f[]的值等于________. 解析:由题意,f(3)=1, ∴f[]=f(1)=2. 答案:2 9.将函数y=f(x)的图象向左平移1个单位,再向上平移2个单位得函数y=x2的图象,则函数f(x)的解析式为__________________. 解析:将函数y=x2的图象向下平移2个单位,得函数y=x2-2的图象,再将函数y=x2-2的图象向右平移1个单位,得函数y=(x-1)2-2的图象,即函数y=f(x)的图象,故f(x)=x2-2x-1. 答案:f(x)=x2-2x-1 10.已知f(0)=1,f(a-b)=f(a)-b(2a-b+1),求f(x). 解:令a=0,则f(-b)=f(0)-b(-b+1) =1+b(b-1)=b2-b+1. 再令-b=x,即得f(x)=x2+x+1. 11.已知f()=+,求f(x). 解:∵=1+,=1+,且≠1, ∴f()=f(1+)=1++ =(1+)2-(1+)+1. ∴f(x)=x2-x+1(x≠1). 12.设二次函数f(x)满足f(2+x)=f(2-x),对于x∈R恒成立,且f(x)=0的两个实根的平方和为10,f(x)的图象过点(0,3),求f(x)的解析式. 解:∵f(2+x)=f(2-x), ∴f(x)的图象关于直线x=2对称. 于是,设f(x)=a(x-2)2+k(a≠0), 则由f(0)=3,可得k=3-4a, ∴f(x)=a(x-2)2+3-4a=ax2-4ax+3. ∵ax2-4ax+3=0的两实根的平方和为10, ∴10=x+x=(x1+x2)2-2x1x2=16-, ∴a=1.∴f(x)=x2-4x+3.查看更多