- 2021-04-12 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
七年级下册数学教案1-2-1 代入消元法 湘教版
1.2 二元一次方程组的解法 1.2.1 代入消元法 1.掌握用代入消元法解二元一次方程组;(重点、难点) 2.了解解二元一次方程组的基本思想是消元. 一、情境导入[来源:学&科&网Z&X&X&K][来源:学。科。网Z。X。X。K] 在上节课的情境导入问题中,设全班男生有x人,女生有y人,则有怎样解这个方程组呢? 二、合作探究 探究点:用代入消元法解二元一次方程组 【类型一】 某个未知数的系数等于1 解方程组: 解析:把第二个方程化简,把第一个方程变形,用x表示y,再代入第二个化简后的方程,消去一个未知数,把二元一次方程组转化为一元一次方程来求解. 解:原方程组可化为将①代入②,得2x-2(2x-5)=1,解得x=.将x=代入①,得y=4,所以方程组的解为 方法总结:代入消元法的基本步骤:①从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来;②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程,求出x(或y)的值;④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值;⑤把求得的未知数的值用“”联立起来,就是方程组的解. 【类型二】 未知数的系数不等于1[来源:Z|xx|k.Com] 解方程组: 解析:把第一个方程变形,用y表示x,再代入第二个方程,消去一个未知数,把二元一次方程组转化为一元一次方程来求解.[来源:学科网ZXXK] 解:由①得x=(3y+1)③.将③代入②,得3×(3y+1)+2y=8,解得y=1.将y=1代入③,得x=2,所以方程组的解为 方法总结:用代入法解二元一次方程组的基本思路是:选取其中一个二元一次方程,将它的一个未知数用另一个未知数来表示,再代入另一个方程,消去一个未知数,将方程转化为一元一次方程求解,即化“二元”为“一元”. 三、板书设计 用代入消元法解二元一次方程组的基本步骤: ①把一个未知数用含有另一个未知数的代数式表示出来; ②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程; ③解这个一元一次方程,求出x(或y)的值; ④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值; ⑤把求得的未知数的值用“”联立起来,就是方程组的解. [来源:学.科.网] 本节课从上节课的实例引入,激发学生解二元一次方程组的求知欲望.在教学过程中,注重启发引导,让学生自主归纳总结用代入消元法解二元一次方程组的基本步骤.同时,应让学生注重数学思想方法的学习——消元查看更多