利用洛必达法则来处理高考中的恒成立问题26978

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

利用洛必达法则来处理高考中的恒成立问题26978

导数结合洛必达法则巧解高考压轴题 ‎ ‎ ‎2010年和2011年高考中的全国新课标卷中的第21题中的第步,由不等式恒成立来求参数的取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。‎ 洛必达法则简介:‎ 法则1 若函数f(x) 和g(x)满足下列条件:(1) 及;   (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;   (3),‎ 那么 =。 法则2 若函数f(x) 和g(x)满足下列条件:(1) 及;   (2),f(x) 和g(x)在与上可导,且g'(x)≠0;   (3),‎ 那么 =。 法则3 若函数f(x) 和g(x)满足下列条件:(1) 及;   (2)在点a的去心邻域内,f(x) 与g(x) 可导且g'(x)≠0;   (3),‎ 那么 =。‎ 利用洛必达法则求未定式的极限是微分学中的重点之一,在解题中应注意: 将上面公式中的x→a,x→∞换成x→+∞,x→-∞,,洛必达法则也成立。‎ 洛必达法则可处理,,,,,,型。‎ 在着手求极限以前,首先要检查是否满足,,,,,,型定式,否则滥用洛必达法则会出错。当不满足三个前提条件时,就不能用洛必达法则,这时称洛必达法则不适用,应从另外途径求极限。 ‎ ‎ eq oac(○,4)若条件符合,洛必达法则可连续多次使用,直到求出极限为止。‎ 二.高考题处理 ‎1.(2010年全国新课标理)设函数。‎ (1) 若,求的单调区间;‎ (2) 若当时,求的取值范围 原解:(1)时,,.‎ 当时,;当时,.故在单调减少,在单调增加 ‎(II) 由(I)知,当且仅当时等号成立.故 ‎ ,‎ 从而当,即时,,而,‎ 于是当时,.‎ ‎ 由可得.从而当时,‎ ‎ ,‎ 故当时,,而,于是当时,.‎ ‎ 综合得的取值范围为 原解在处理第(II)时较难想到,现利用洛必达法则处理如下:‎ 另解:(II)当时,,对任意实数a,均在;‎ 当时,等价于 令(x>0),则,令,则,,‎ 知在上为增函数,;知在上为增函数,;,g(x)在上为增函数。‎ 由洛必达法则知,,‎ 故 综上,知a的取值范围为。‎ ‎2.(2011年全国新课标理)已知函数,曲线在点处的切线方程为。‎ ‎(Ⅰ)求、的值;‎ ‎(Ⅱ)如果当,且时,,求的取值范围。‎ 原解:(Ⅰ) ‎ 由于直线的斜率为,且过点,故即 ‎ 解得,。‎ ‎(Ⅱ)由(Ⅰ)知,所以 ‎ 。‎ 考虑函数,则。‎ ‎(i)设,由知,当时,,h(x)递减。而故当时, ,可得;‎ 当x(1,+)时,h(x)<0,可得 h(x)>0‎ 从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.‎ ‎(ii)设00,故 (x)>0,而h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。‎ ‎(iii)设k1.此时,(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 h(x)<0,与题设矛盾。‎ ‎ 综合得,k的取值范围为(-,0]‎ 原解在处理第(II)时非常难想到,现利用洛必达法则处理如下:‎ 另解:(II)由题设可得,当时,k<恒成立。‎ 令g (x)= (),则,‎ 再令(),则,,易知在上为增函数,且;故当时,,当x(1,+)时,;‎ 在上为减函数,在上为增函数;故>=0‎ 在上为增函数 =0‎ 当时,,当x(1,+)时, 当时,,当x(1,+)时, 在上为减函数,在上为增函数 由洛必达法则知 ,即k的取值范围为(-,0]‎ 规律总结:对恒成立问题中的求参数取值范围,参数与变量分离较易理解,但有些题中的求分离出来的函数式的最值有点麻烦,利用洛必达法则可以较好的处理它的最值,是一种值得借鉴的方法。‎
查看更多

相关文章

您可能关注的文档