- 2021-04-12 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
吉林省桦甸市第八中学2020届高三上学期第三次月考数学(文)试卷
数学(文科)试题 本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,试卷共4页, 满分150分,考试时间120分钟。 第I卷(选择题 共60分) 一、选择题(12×5分) 1.设集合,集合,那么等于( ) A. B. C. D. 2.已知,则的值为( ) A. B. C. D. - 3.若实数满足条件则的最大值是( ) A. B. C. D.1 4.下列有关命题的说法正确的是( ) A.命题“若,则”的否命题为:“若,则”. B.“”是“”的必要不充分条件. C.命题“使得”的否定是:“对均有”. D.命题“若,则”的逆否命题为真命题. 5.已知向量,,,若,则实数( ) A. B. C. D.2 6.的内角的对边分别为,若,则的面积为( ) A. B. C. D. 7.记单调递增的等比数列前n项和为,若,,则( ) A. B. C. D. 8.已知并且成等差数列,则的最小值为( ) A.2 B.4 C.5 D.9 9.甲、乙、丙、丁四个人参加某项竞赛,四人在成绩公布前做出如下预测: 甲说:获奖者在乙丙丁三人中; 乙说:我不会获奖,丙获奖; 丙说:甲和丁中的一人获奖; 丁说:乙猜测的是对的. 成绩公布后表明,四人中有两人的预测与结果相符,另外两人的预测与结果不相符.已知俩人获奖,则获奖的是( ) A.甲和丁 B.甲和丙 C.乙和丙 D.乙和丁 10.三棱锥中, 面则该棱锥的外接球的表面积是( ) A. B. C. D. 11.已知函数,若将函数的图象向右平移个单位长度后,所得图象关于y轴对称,则下列结论中不正确的是( ) A. B.是图象的一个对称中心 C. D.是图象的一条对称轴 12.定义在R上的函数满足:,则不等式的解集为( ) A. B. C. D. 第II卷(非选择题 共90分) 二、填空题(4×5分) 13.函数的图像恒过定点P,则P的坐标为 _________ . 14.设,且,则的最小值是__________ 15.已知发f(x)=lnx +3x,则曲线在点(1,3)处的切线方程是__________. 16.已知函数是R上的偶函数,对于任意,都有成立,当,且时,都有.给出下列命题: ① ; ② 直线是函数的图象的一条对称轴; ③ 函数在上为增函数; ④ 函数在上有四个零点. 其中所有正确命题的序号为 (把所有正确命题的序号都填上) 三、解答题(17题10分,18题,19题,20题,21题,22题各12分,共70分) 17.等比数列中, ,。 (1)求的通项公式; (2)记为的前项和,若,求 18.已知分别为三个内角的对边,且 (1)求的值; (2)若的面积为,且,求a的值. 19.已知函数的最大值为1 (1)求常数a的值; (2)求函数的单调递增区间; (3)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值. 20. 已知等差数列的前n项和满足. (1)求的通项公式; (2)求数列的前n项和. 21.如图,在三棱锥中,平面平面,为等边三角形,且,分别为的中点. (1) 求证:VB//平面 (2)求证:平面平面 (2) 求三棱锥的体积 22.已知函数. (1).若,求函数的单调区间; (2).对任意的,不等式恒成立,求实数的取值范围. 文科数学 参考答案 一、选择题 1.答案:A 2.答案:D 3.答案:B 4.答案:D 5.答案:C 6.答案:A 7.答案:C 8.答案:D 9.答案:D 10.答案:B 11.答案:C 12.答案:A 解析:由题意得,变换后的函数的图象关于y轴对称,则,,因为,所以,故A正确;,由,,得对称中心的横坐标为,,故是图象的一个对称中心,故B正确;,故C不正确;由,,得,,则是图象的一条对称轴,故D正确。 二、填空题 13.答案: 14.答案: 解析:∵,∴. 当且仅当,即时等号成立 15.答案:: 16.答案:① ② ④ 三、 解答题 17.答案:(1) 或 解析:.∵∴ ∴∴或 (2)1.当时, 2. 当时, 无解 综上所述: 18.答案:(1), 即 (2) 19.答案:(1) (2)由,解得 ,所以函数的单调递增区间 (3)将的图象向左平移个单位,得到函数的图象, 当时,,取最大值 当时,,取最小值-3. 20.答案:(1)设的公差为d,则, 由已知可得 解得. 故的通项公式为. (2)由(1)知, 从而数列的前n项和为. 21.答案:(1)证明:因为分别是的中点, 所以,因为面,平面, 所以平面 (2)证明:,O是的中点, 所以,又因为平面平面,且平面, 所以平面, 所以平面平面 (3)三棱锥的体积为 解析:在等腰直角三角形中, , 所以, , 所以等边三角形的面积, 又因为平面, 所以三棱锥的体积等于. 又因为三棱锥的体积与三棱锥的体积相等 22.答案:(1).当时,,定义域为,. 令,得;令,得. 因此,函数的单调递增区间为,单调递减区间为; (2).不等式恒成立,等价于在恒成立, 令,,则, 显然时,,单调递减;时, ,单调递增. 所以在处取得最小值, 所以,即实数的取值范围是.查看更多