- 2024-01-21 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020年中考数学总复习 第15讲 等腰、等边、直角三角形 新版 新人教版
第15讲 等腰、等边及直角三角形 一、 知识清单梳理 知识点一:等腰和等边三角形 关键点拨与对应举例 1.等腰三角形 (1)性质 ①等边对等角:两腰相等,底角相等,即AB=AC∠B=∠C; ②三线合一:顶角的平分线、底边上的中线和底边上的高 互相重合; ③对称性:等腰三角形是轴对称图形,直线AD是对称轴. (2)判定 ①定义:有两边相等的三角形是等腰三角形; ②等角对等边:即若∠B=∠C,则△ABC是等腰三角形. (1)三角形中“垂线、角平分线、中线、等腰”四个条件中,只要满足其中两个,其余均成立. 如:如左图,已知AD⊥BC,D为BC的中点,则三角形的形状是等腰三角形. 失分点警示:当等腰三角形的腰和底不明确时,需分类讨论. 如若等腰三角形ABC的一个内角为30°,则另外两个角的度数为30°、120°或75°、75°. 2.等边三角形 (1)性质 ①边角关系:三边相等,三角都相等且都等于60°. 即AB=BC=AC,∠BAC=∠B=∠C=60°; ②对称性:等边三角形是轴对称图形,三条高线(或角平分线或中线)所在的直线是对称轴. (2)判定 ①定义:三边都相等的三角形是等边三角形; ②三个角都相等(均为60°)的三角形是等边三角形; ③任一内角为60°的等腰三角形是等边三角形.即若AB=AC,且∠B=60°,则△ABC是等边三角形. (1)等边三角形是特殊的等腰三角形,所以等边三角形也满足“三线合一”的性质. (2)等边三角形有一个特殊的角60°,所以当等边三角形出现高时,会结合直角三角形30°角的性质,即BD=1/2AB. 例:△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为9. 知识点二 :角平分线和垂直平分线 3.角平分线 (1)性质:角平分线上的点到角的两边的距离相等.即若 ∠1 =∠2,PA⊥OA,PB⊥OB,则PA=PB. (2)判定:角的内部到角的两边的距离相等的点在角的角平 分线上. 例:如图,△ABC中,∠C=90°,∠A=30°,AB的垂直平分线交AC于D,交AB于E,CD=2,则AC=6. 4.垂直平分线图形 (1)性质:线段的垂直平分线上的点到这条线段的两端点距离相等.即若OP垂直且平分AB,则PA=PB. (2)判定:到一条线段两端点距离相等的点在这条线段的垂直平分线上. 知识点三:直角三角形的判定与性质 5.直角三角形的性质 (1)两锐角互余.即∠A+∠B=90°; (2) 30°角所对的直角边等于斜边的一半.即若∠B=30°则AC=AB; (1)直角三角形的面积S=1/2ch=1/2ab(其中a,b为直角边,c为斜边,h (3) 斜边上的中线长等于斜边长的一半.即若CD是中线,则CD=AB. (4) 勾股定理:两直角边a、b的平方和等于斜边c的平方.即 a2+b2=c2 . 是斜边上的高),可以利用这一公式借助面积这个中间量解决与高相关的求长度问题. (2)已知两边,利用勾股定理求长度,若斜边不明确,应分类讨论. (3)在折叠问题中,求长度,往往需要结合勾股定理来列方程解决. 6.直角三角形的判定 (1) 有一个角是直角的三角形是直角三角形.即若∠C=90°,则△ABC是Rt△; (2) 如果三角形一条边的中线等于这条边的一半,那么这个三角形是直角三角形.即若AD=BD=CD,则△ABC是Rt△ (3) 勾股定理的逆定理:若a2+b2=c2,则△ABC是Rt△. 一、 典例试做: 内参P56---5、6、7、17、20 P58---1、2、4、11、17 三、课后反思:查看更多