- 2021-06-25 发布 |
- 37.5 KB |
- 13页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学压轴题剖析
云南省初中学业水平考试压轴题汇集 1.(9分)(2015•云南)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B,C两点,已知A(1,0),C(0,3),且BC=5. (1)分别求直线BC和抛物线的解析式(关系式); (2)在抛物线的对称轴上是否存在点P,使得以B,C,P三点为顶点的三角形是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由. 考点: 二次函数综合题.. 专题: 综合题. 分析: (1)由C的坐标确定出OC的长,在直角三角形BOC中,利用勾股定理求出OB的长,确定出点B坐标,把B与C坐标代入直线解析式求出k与n的值,确定出直线BC解析式,把A与B坐标代入抛物线解析式求出a的值,确定出抛物线解析式即可; (2)在抛物线的对称轴上不存在点P,使得以B,C,P三点为顶点的三角形是直角三角形,如图所示,分两种情况考虑:当PC⊥CB时,△PBC为直角三角形;当P′B⊥BC时,△BCP′为直角三角形,分别求出P的坐标即可. 解答: 解:(1)∵C(0,3),即OC=3,BC=5, ∴在Rt△BOC中,根据勾股定理得:OB==4,即B(4,0), 把B与C坐标代入y=kx+n中,得:, 解得:k=﹣,n=3, ∴直线BC解析式为y=﹣x+3; 由A(1,0),B(4,0),设抛物线解析式为y=a(x﹣1)(x﹣4)=ax2﹣5ax+4a, 把C(0,3)代入得:a=, 则抛物线解析式为y=x2﹣x+3; (2)存在. 如图所示,分两种情况考虑: ∵抛物线解析式为y=x2﹣x+3, ∴其对称轴x=﹣=﹣=. 当PC⊥CB时,△PBC为直角三角形, ∵直线BC的斜率为﹣, ∴直线PC斜率为, ∴直线PC解析式为y﹣3=x,即y=x+3, 与抛物线对称轴方程联立得, 解得:, 此时P(,); 当P′B⊥BC时,△BCP′为直角三角形, 同理得到直线P′B的斜率为, ∴直线P′B方程为y=(x﹣4)=x﹣, 与抛物线对称轴方程联立得:, 解得:, 此时P′(,﹣2). 综上所示,P(,)或P′(,﹣2). 2.如图①,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4), 点C在第一象限.动点P在正方形 ABCD的边上,从点A出发沿A→B→C→D匀速运动, 同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动, 设运动的时间为t秒. (1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度; (2)求正方形边长及顶点C的坐标; (3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标; (4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由. 解:(1)(1,0) 1分 点P运动速度每秒钟1个单位长度. 2分 (2) 过点作BF⊥y轴于点,⊥轴于点,则=8,. ∴. 在Rt△AFB中, 3分 过点作⊥轴于点,与的延长线交于点. ∵ ∴△ABF≌△BCH. ∴. ∴. ∴所求C点的坐标为(14,12). 4分 (3) 过点P作PM⊥y轴于点M,PN⊥轴于点N, 则△APM∽△ABF. ∴. . ∴. ∴. 设△OPQ的面积为(平方单位) ∴(0≤≤10) 5分 说明:未注明自变量的取值范围不扣分. ∵<0 ∴当时, △OPQ的面积最大. 6分 此时P的坐标为(,) . 7分 (4) 当 或时, OP与PQ相等. 3、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标; (2)设点的运动时间为秒,的面积为,求出与之间的函数关系式; x A O Q P B y (3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标. 解(1)A(8,0)B(0,6) 1分 (2) 点由到的时间是(秒) 点的速度是(单位/秒) 1分 当在线段上运动(或0)时, 1分 当在线段上运动(或)时,, 如图,作于点,由,得, 1分 1分 (自变量取值范围写对给1分,否则不给分.) (3) 1分 3分 4如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P. (1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由; (2)当k为何值时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 解:(1)⊙P与x轴相切. ∵直线y=-2x-8与x轴交于A(4,0), 与y轴交于B(0,-8), ∴OA=4,OB=8. 由题意,OP=-k, ∴PB=PA=8+k. 在Rt△AOP中,k2+42=(8+k)2, ∴k=-3,∴OP等于⊙P的半径, ∴⊙P与x轴相切. (2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P 在线段OB上时,作PE⊥CD于E. ∵△PCD为正三角形,∴DE=CD=,PD=3, ∴PE=. ∵∠AOB=∠PEB=90°, ∠ABO=∠PBE, ∴△AOB∽△PEB, ∴, ∴ ∴, ∴, ∴. 当圆心P在线段OB延长线上时,同理可得P(0,--8), ∴k=--8, ∴当k=-8或k=--8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形. 5.如图1,在等腰梯形中,,是的中点,过点作交于点.,. (1)求点到的距离; (2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设. ①当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由; ②当点在线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由. A D E B F C 图4(备用) A D E B F C 图5(备用) A D E B F C 图1 图2 A D E B F C P N M 图3 A D E B F C P N M (第25题) 解(1)如图1,过点作于点 1分 图1 A D E B F C G ∵为的中点, ∴ 在中,∴ 2分 ∴ 即点到的距离为 3分 (2)①当点在线段上运动时,的形状不发生改变. ∵∴ ∵∴, 同理 4分 如图2,过点作于,∵ 图2 A D E B F C P N M G H ∴ ∴ ∴ 则 在中, ∴的周长= 6分 ②当点在线段上运动时,的形状发生改变,但恒为等边三角形. 当时,如图3,作于,则 类似①, ∴ 7分 ∵是等边三角形,∴ 此时, 8分 图3 A D E B F C P N M 图4 A D E B F C P M N 图5 A D E B F(P) C M N G G R G 当时,如图4,这时 此时, 当时,如图5, 则又 ∴ 因此点与重合,为直角三角形. ∴ 此时, 综上所述,当或4或时,为等腰三角形. 10分 6.(9分)(2014年云南省)已知如图平面直角坐标系中,点O是坐标原点,矩形ABCD是顶点坐标分别为A(3,0)、B(3,4)、C(0,4).点D在y轴上,且点D的坐标为(0,﹣5),点P是直线AC上的一动点. (1)当点P运动到线段AC的中点时,求直线DP的解析式(关系式); (2)当点P沿直线AC移动时,过点D、P的直线与x轴交于点M.问在x轴的正半轴上是否存在使△DOM与△ABC相似的点M?若存在,请求出点M的坐标;若不存在,请说明理由; (3)当点P沿直线AC移动时,以点P为圆心、R(R>0)为半径长画圆.得到的圆称为动圆P.若设动圆P的半径长为,过点D作动圆P的两条切线与动圆P分别相切于点E、F.请探求在动圆P中是否存在面积最小的四边形DEPF?若存在,请求出最小面积S的值;若不存在,请说明理由. 考点: 圆的综合题;待定系数法求一次函数解析式;垂线段最短;勾股定理;切线长定理;相似三角形的判定与性质. 专题: 综合题;存在型;分类讨论. 分析: (1)只需先求出AC中点P的坐标,然后用待定系数法即可求出直线DP的解析式. (2)由于△DOM与△ABC相似,对应关系不确定,可分两种情况进行讨论,利用三角形相似求出OM的长,即可求出点M的坐标. (3)易证S△PED=S△PFD.从而有S四边形DEPF=2S△PED=DE.由∠DEP=90°得DE2=DP2﹣PE2=DP2﹣.根据“点到直线之间,垂线段最短”可得:当DP⊥AC时,DP最短,此时DE也最短,对应的四边形DEPF的面积最小.借助于三角形相似,即可求出DP⊥AC时DP的值,就可求出四边形DEPF面积的最小值. 解答: 解:(1)过点P作PH∥OA,交OC于点H,如图1所示. ∵PH∥OA, ∴△CHP∽△COA. ∴==. ∵点P是AC中点, ∴CP=CA. ∴HP=OA,CH=CO. ∵A(3,0)、C(0,4), ∴OA=3,OC=4. ∴HP=,CH=2. ∴OH=2. ∵PH∥OA,∠COA=90°, ∴∠CHP=∠COA=90°. ∴点P的坐标为(,2). 设直线DP的解析式为y=kx+b, ∵D(0,﹣5),P(,2)在直线DP上, ∴ ∴ ∴直线DP的解析式为y=x﹣5. (2)①若△DOM∽△ABC,图2(1)所示, ∵△DOM∽△ABC, ∴=. ∵点B坐标为(3,4),点D的坐标为(0.﹣5), ∴BC=3,AB=4,OD=5. ∴=. ∴OM=. ∵点M在x轴的正半轴上, ∴点M的坐标为(,0) ②若△DOM∽△CBA,如图2(2)所示, ∵△DOM∽△CBA, ∴=. ∵BC=3,AB=4,OD=5, ∴=. ∴OM=. ∵点M在x轴的正半轴上, ∴点M的坐标为(,0). 综上所述:若△DOM与△CBA相似,则点M的坐标为(,0)或(,0). (3)∵OA=3,OC=4,∠AOC=90°, ∴AC=5. ∴PE=PF=AC=. ∵DE、DF都与⊙P相切, ∴DE=DF,∠DEP=∠DFP=90°. ∴S△PED=S△PFD. ∴S四边形DEPF=2S△PED =2×PE•DE =PE•DE =DE. ∵∠DEP=90°, ∴DE2=DP2﹣PE2. =DP2﹣. 根据“点到直线之间,垂线段最短”可得: 当DP⊥AC时,DP最短, 此时DE取到最小值,四边形DEPF的面积最小. ∵DP⊥AC, ∴∠DPC=90°. ∴∠AOC=∠DPC. ∵∠OCA=∠PCD,∠AOC=∠DPC, ∴△AOC∽△DPC. ∴=. ∵AO=3,AC=5,DC=4﹣(﹣5)=9, ∴=. ∴DP=. ∴DE2=DP2﹣ =()2﹣ =. ∴DE=, ∴S四边形DEPF=DE =. ∴四边形DEPF面积的最小值为. 点评: 本题考查了相似三角形的判定与性质、用待定系数法求直线的解析式、切线长定理、勾股定理、垂线段最短等知识,考查了分类讨论的思想.将求DE的最小值转化为求DP的最小值是解决第3小题的关键.另外,要注意“△DOM与△ABC相似”与“△DOM∽△ABC“之间的区别. 查看更多