- 2021-06-25 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
小升初数学模拟试卷及解析(40)人教新课标
小升初数学模拟试卷及解析(40)人教新课标(2014秋) 一、填空.(每小题3分,共30分) 1.(3分)用0、1、2、3、4这五个数字可以组成 个不同的三位数. 2.(3分)过春节的时候,6名老朋友间都通了一次电话相互问好.他们一共打了 个电话. 3.(3分)在一个布袋里有红色、黄色、蓝色小球各6个,一次至少摸出 只才能保证其中有2个是同色的. 4.(3分)一个分数,分子和分母的和是37,分子减少2后,可简化为,这个分数原来是 . 5.(3分)甲数除以乙数,商是1.2,甲数与乙数的最简整数比是 . 6.(3分)一个长方形的周长是42cm,它的长与宽的比是4:3,它的面积是 cm2. 7.(3分)甲、乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距A地40千米处相遇.A、B两地相距 千米. 8.能同时被2、3、5整除的最大三位数是 . 9.(3分)甲、乙两个数的比是5:4,甲数比乙数多,乙数比甲数少. 10.(3分)一批货物,甲单独运1.5小时运完,乙单独运2小时运完.甲和乙的工作效率之比是 . 二、判断题.(每小题2分,共12分) 11.植树节,我校植树102棵,全部成活,成活率为102%. (判断对错) 12.(2分)甲乙都是大于零的自然数,甲的等于乙的,那么甲小于乙.… . 13.100千克比50千克多100%. .(判断对错) 14.(2分)甲数比乙数多,也就是乙数比甲数少. .(判断对错) 15.(2分)把50克盐放入1千克水中,盐与盐水的比是50:51.… .[来源:学&科&网Z&X&X&K] 16.(2分)一件商品,先提价20%,以后又降价20%,现在的价格与原来相比不变. .(判断对错) 三、应用题.(每小题7分,共42分) 17.(7分)用红、黄、绿各一盏信号灯,一共可以组成 种不同的信号. 18.(7分)甲、乙、丙每分钟的速度分别为75米、80米、100米.甲、乙从A地,丙从B地,同时相向出发,丙遇上乙后3分钟再遇到甲.求A、B两地的距离. 19.(7分)甲、乙两人以每分钟60米的速度同时同地同向步行出发,15分钟后,甲返回原地取东西,乙继续前进,甲取东西用去5分钟,然后骑自行车以每分钟360米的速度去追乙,甲骑车 分钟才能追上乙. 20.(7分)有两只桶共装油40千克,若第一桶倒出,第二桶倒进2千克,则两桶内的油相等.原来每只桶装油 、 千克. 21.(7分)某工厂甲车间人数是乙车间人数的,如果从乙车间调60人到甲车间,这时乙车间人数是甲车间的,甲车间原有多少人? 22.(7分)甲、乙二人在银行共储蓄620元,甲储蓄的钱数的等于乙储蓄钱数的,甲、乙各储蓄了 、 元.[来源:学|科|网Z|X|X|K] 参考答案与试题解析 一、填空.(每小题3分,共30分) 1.(3分)用0、1、2、3、4这五个数字可以组成 48 个不同的三位数. 考点: 简单的排列、组合. 专题: 传统应用题专题. 分析: 由已知5个数字0,1,2,3,4,任取三个数组成一个三位数,那么百位数不能是0,还有4种选择;十位数有4种选择;个位数有3种选择.再运用乘法原理解答. 解答: 解:4×4×3, =16×3, =48(种); 答:这五个数字可以组成 48个不同的三位数. 故答案为:48. 点评: 此题考查的知识点是乘法原理的应用.关键是要知道组成的三位数,百位数有4种选择;十位数有4种选择;个位数有3种选择. 2.(3分)过春节的时候,6名老朋友间都通了一次电话相互问好.他们一共打了 30 个电话. 考点: 握手问题. 专题: 竞赛专题. 分析: 6个老朋友每两人通一次电话,则每个老朋友都要和其他5个人通一次电话,即每个人要打5次电话,共有6个老朋友,所以共打5×6=30次,打电话是在两个人之间进行的,所以他们互通电话共30÷2=15次. 解答: 解:6×(6﹣1)÷2 =6×5÷2, =30(次); 答:他们一共打了30个电话. 故答案为:30. 点评: 本题关键是理解每个人都要和另外的5人打一次电话,注意去掉重复计算的情况,握手问题的计算方法是:总人数×(总人数﹣1)÷2. 3.(3分)在一个布袋里有红色、黄色、蓝色小球各6个,一次至少摸出 4 只才能保证其中有2个是同色的.[来源:Z,xx,k.Com] 考点: 抽屉原理. 专题: 传统应用题专题. 分析: 把红黄白三种颜色看做3个抽屉,利用抽屉原理即可解答. 解答: 解:建立抽屉:把红黄白三种颜色分别看做3个抽屉, 考虑最差情况:摸出3个小球,每个抽屉都有1个小球,此时再任意摸出1个小球,无论放到哪个抽屉都会出现2个颜色相同的小球, 所以3+1=4(个), 答:一次至少摸出4个球,才能保证有2个是同一种颜色的. 故答案为:4. 点评: 此题考查了抽屉原理解决实际问题的灵活应用,这里要考虑最差情况. 4.(3分)一个分数,分子和分母的和是37,分子减少2后,可简化为,这个分数原来是 . 考点: 分数的基本性质. 专题: 分数和百分数. 分析: 已知一个分数,分子和分母的和是37,分子减少2后,约分后得,即分子和分母的比是1:6,总份数是(1+6)份,再求出分子、分母各占和的几分之几,根据一个数乘分数的意义列式解答即可. 解答: 解:1+6=7, (37﹣2)×=35×=5, 则分子是5+2=7, (37﹣2)×=35×=30. 答:这个分数是. 故答案为:. 点评: 此题考查的目的是理解掌握分数的基本性质,根据按比例分配的方法解答. 5.(3分)甲数除以乙数,商是1.2,甲数与乙数的最简整数比是 6:5 . 考点: 比的意义. 专题: 比和比例. 分析: 甲数除以乙数的商是1.2,也就是甲数是乙数的1.2倍,把乙数看作单位“1”,因此甲数与乙数的比是1.2:1,化简即可. 解答: 解:1.2:1=6:5. 故答案为:6:5. 点评: 此题考查了比的意义,以及化简比的方法. 6.(3分)一个长方形的周长是42cm,它的长与宽的比是4:3,它的面积是 108 cm2. 考点: 长方形、正方形的面积. 分析: 根据长和宽的比求出长方形的长和宽,然后代入公式求面积. 解答: 解:长方形的周长是42cm,所以长+宽=周长÷2=42÷2=21(cm); 因为长与宽的比是4:3,所以可得: 长方形的长=21×=12(cm); 长方形的宽=21×=9(cm); S长=ab =12×9 =108(cm2); 故填:108. 点评: 此题考查了知长方形的周长求面积. 7.(3分)甲、乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇.各自到达对方出发地后立即返回,途中又在距A地40千米处相遇.A、B两地相距 110 千米. 考点: 多次相遇问题. 专题: 行程问题. 分析: 甲、乙两车同时从A、B两地相向而行,在距A地60千米处第一次相遇,则相遇时,两人共行一个全程,甲行了60千米,即每共行一个全程,甲就行60千米,又第二次相遇时,两人共行了三个全程,则此时甲行了60×3千米,此时距A地40千米,甲再行40千米就行了两个全程,所以全程是(60×3+40)÷2千米. 解答: 解:(60×3+40)÷2 =(180+40)÷2 =220÷2 =110(千米) 答:AB两地相距110千米. 点评: 明确甲每共行一个全程就行60千米,由此求出第二次相遇时甲所行路程是完成本题的关键. 8.能同时被2、3、5整除的最大三位数是 990 . 考点: 公倍数和最小公倍数;数的整除特征. 分析: 根据题意可先确定能被2整除的数的特征、能被3整除的数的特征、能被5整除的数的特征,再确定能同时被2、3、5整除的数的特征,再算出最大的三位数即可. 解答: 解:能被2整除的特征:个位上是0、2、4、6、8的数, 能被3整除的数的特征:各个数位上的数字相加的和能被3整除, 能被5整除的数的特征:个位上的数字是0或者5的数, 要同时能被2和5整除,这个三位数的个位一定是0. 要能被3整除,又要是最大的三位数,这个数是990. 故答案为:990. 点评: 此题主要考查的是能同时被2、3、5整除的数的特征. 9.(3分)甲、乙两个数的比是5:4,甲数比乙数多,乙数比甲数少. 考点: 分数除法. 专题: 运算顺序及法则. 分析: 根据题意,把甲数看作5,乙数看作4,要求甲数比乙数多几分之几,列式为(5﹣4)÷4,计算即可;要求乙数比甲数少几分之几,列式为(5﹣4)÷5,计算即可. 解答: 解:(5﹣4)÷4 =1÷4 =, (5﹣4)÷5 =1÷5 =. 答:甲数比乙数多,乙数比甲数少. 故答案为:,. 点评: 此题考查了“一个数(a)比另一个数(b)多或少百分之几”的应用题,列式为(a﹣b)÷b或(b﹣a)÷b. 10.(3分)一批货物,甲单独运1.5小时运完,乙单独运2小时运完.甲和乙的工作效率之比是 4:3 . 考点: 简单的工程问题;比的意义. 专题: 工程问题. 分析: 把总重量看成单位“1”,甲的工作效率是,乙的工作效率是,用甲的工作效率比上乙的工作效率即可求解. 解答: 解::=2:1.5=4:3; 答:甲和乙的工作效率之比是 4:3. 故答案为:4:3. 点评: 本题把工作总量看成单位“1”,把工作效率表示出来,再根据作比、化简比的方法求解. 二、判断题.(每小题2分,共12分) 11.植树节,我校植树102棵,全部成活,成活率为102%. × (判断对错) 考点: 百分率应用题. 专题: 分数百分数应用题. 分析: 成活率是指成活的棵数占总棵数的百分比,计算方法是:成活的棵数÷植树总棵数×100%=成活率,代入数据求解即可. 解答: 解:102÷102×100%=100% 答:成活率是100%. 故答案为:×. 点评: 此题属于百分率问题,都是用一部分数量(或全部数量)除以全部数量乘百分之百. 12.(2分)甲乙都是大于零的自然数,甲的等于乙的,那么甲小于乙.… √ . 考点: 分数大小的比较. 专题: 运算顺序及法则. 分析: 要判断甲、乙两数的大小,根据已知条件甲的等于乙的(甲数、乙数都大于0),即甲数×=乙数×,即甲数=乙数××=乙数×,由此可以判断甲数<乙数. 解答: 解:甲数×=乙数×,原式转化为:甲数=乙数××=乙数×, 由此可以判断甲数<乙数. 故答案为:√. 点评: 为了更明显的判断甲、乙两数的大小,把原题转化为:甲数=乙数××=乙数×的形式进行判断. 13.100千克比50千克多100%. √ .(判断对错) 考点: 百分数的意义、读写及应用. 专题: 分数和百分数. 分析: 求100千克比50千克多百分之几,是求分率,先求出多多少千克,再除以50得解. 解答: 解:(100﹣50)÷50, =50÷50, =100%; 故答案为:√. 点评: 解答此题的关键是先求出多多少千克,然后根据求一个数是另一个数的几分之几,用除法解答. 14.(2分)甲数比乙数多,也就是乙数比甲数少. × .(判断对错) 考点: 分数除法应用题. 专题: 分数百分数应用题. 分析: 先把乙数看作单位“1”,甲数比乙数多,那么甲数就是1×(1+)=,再把甲数看作单位“1”,用甲数比乙数多的分率除以甲数,最后与题干中表达的意义比较即可解答. 解答: 解:÷[1×(1+)] =÷[1×] = = 故答案为:×. 点评: 明确单位“1”的变化对于解答本题来说非常关键. 15.(2分)把50克盐放入1千克水中,盐与盐水的比是50:51.… × . 考点: 比的意义. 专题: 比和比例. 分析: 把50克盐放入1千克的水中,就形成了1000+50=1050克的盐水,要求盐和盐水的比,也就是求50克和1050克的比,写出比再把比化成最简比;即可判断. 解答: 解:1千克=1000克, 盐水:1000+50=1050(克), 盐和盐水的比:50:1050=(50÷50):(1050÷50)=1:21; 答:盐与盐水的比是1:21. 故判断为:×. 点评: 此题考查比的意义,解决此题关键是先求出盐水的质量,进而看准要求的是哪两个量的比,进而写比并化简比得解. 16.(2分)一件商品,先提价20%,以后又降价20%,现在的价格与原来相比不变. × .(判断对错) 考点: 百分数的实际应用. 专题: 分数百分数应用题. 分析: 设商品的原价是1,先把原价看成单位“1”,提价20%后的价格是原价的1+20%,由此用乘法求出提价后的价格;再把提价后的价格看成单位“1”,现价是提价后的1﹣20%,再用乘法求出现价,然后现价和原价比较即可判断. 解答: 解:设商品的原价是1,现价是: 1×(1+20%)×(1﹣20%) =1×120%×80% =0.96 0.96<1,现价比原价降低了; 故答案为:×. 点评: 解答此题的关键是分清两个单位“1”的区别,找清各自以谁为标准,再把数据设出,根据基本的数量关系解决问题. 三、应用题.(每小题7分,共42分) 17.(7分)用红、黄、绿各一盏信号灯,一共可以组成 6 种不同的信号. 考点: 简单的排列、组合. 专题: 传统应用题专题. 分析: 本题是对红、黄、绿三种信号灯进行排列,用列举法解决. 解答: 解:用红、黄、绿各一盏信号灯,可以组成的不同信号有: 红黄绿,红绿黄,黄红绿,黄绿红,绿红黄,绿黄红. 一共有6种; 故答案为:6. 点评: 本题要注意按照一定的顺序列举,不要重复写或漏写.[来源:学科网] 18.(7分)甲、乙、丙每分钟的速度分别为75米、80米、100米.甲、乙从A地,丙从B地,同时相向出发,丙遇上乙后3分钟再遇到甲.求A、B两地的距离. 考点: 相遇问题. 专题: 综合行程问题. 分析: 丙遇到乙后3分钟又遇到甲,则从丙遇到乙后,再和甲相遇的这3分钟里,甲丙共行了(75+100)×3=525米,即丙乙相遇时,乙比甲多行了525米,甲乙两人的速度差为80﹣75=5米/分钟,则乙丙相遇时,乙行了525÷5=105分钟,所以A、B两地的距离为:(80+100)×105=18900米. 解答: 解:(75+100)×3÷(80﹣75)×(80+100) =175×3÷5×180 =525÷5×180 =105×180 =18900(米) 答:A、B两地相距18900米. 点评: 根据丙乙相遇后甲与丙的相遇时间求出相遇时甲乙的距离差,并由此求出乙丙的相遇时间是完成本题的关键. 19.(7分)甲、乙两人以每分钟60米的速度同时同地同向步行出发,15分钟后,甲返回原地取东西,乙继续前进,甲取东西用去5分钟,然后骑自行车以每分钟360米的速度去追乙,甲骑车 7 分钟才能追上乙. 考点: 追及问题. 专题: 行程问题. 分析: 由题意可知,甲返回原地时,已经走了15×2=30 分钟,取东西用去5分钟,共用了35分钟,也是乙走的时间.即此时两人相距60×35=2100米,之后甲每分中比乙多走360﹣60=30米,则乙多走的2100米可在2100÷300=7分钟 时被甲赶上. 解答: 解:60×(15×2+5)÷(360﹣60)[来源:学#科#网] =60×35÷300, =7(分钟). 即甲骑车 7分钟才能追上乙. 故答案为:7. 点评: 完成本题依据关系式为:距离差÷速度差=追及时间. 20.(7分)有两只桶共装油40千克,若第一桶倒出,第二桶倒进2千克,则两桶内的油相等.原来每只桶装油 24 、 16 千克. 考点: 列方程解含有两个未知数的应用题. 专题: 列方程解应用题. 分析: 根据题意,可找出数量之间的相等关系式为:第一桶剩下千克数=第二桶倒进2千克后的千克数,设第一桶有x千克,那么第二桶有(40﹣x)千克,据此列出方程并解方程即可. 解答: 解:设第一桶有x千克,那么第二桶有(40﹣x)千克, x×(1﹣)=40﹣x+2, x=42﹣x, x+x=42﹣x+x, x=42, x÷=42÷, x=24, 第二桶有:40﹣24=16(千克). 答:原来第一桶有24千克,第二桶有16千克. 故答案为:24,16. 点评: 此题属于含有两个未知数的应用题,这类题用方程解答比较容易,关键是找准数量间的相等关系,设一个未知数为x,另一个未知数用含x的式子来表示,进而列并解方程即可. 21.(7分)某工厂甲车间人数是乙车间人数的,如果从乙车间调60人到甲车间,这时乙车间人数是甲车间的,甲车间原有多少人? 考点: 分数四则复合应用题. 专题: 分数百分数应用题. 分析: 设乙车间原有x人,那么甲车间就有x人,依据题意乙车间人数﹣60人=甲车间人数加60人后的,可列方程:x﹣60=(x+60)×,依据等式的性质求出乙车间人数,再依据分数乘法意义即可解答. 解答: 解:设乙车间原有x人, x﹣60=(x+60)×, x﹣60=x×+60× x﹣60=x+40, x﹣60﹣x=x+40﹣x, x﹣60+60=40+60, x=100, x=200, 200×=150(人), 答:甲车间原有150人. 点评: 解答此类题目用方程法比较简单,只要设其中一个量是x,再用x表示出另一个量,依据数量间的等量关系列方程即可解答,解方程时注意对齐等号. 22.(7分)甲、乙二人在银行共储蓄620元,甲储蓄的钱数的等于乙储蓄钱数的,甲、乙各储蓄了 300 、 320 元. 考点: 分数四则复合应用题. 专题: 分数百分数应用题. 分析: 根据题意,可找出数量间的相等关系:甲储蓄的钱数×=乙储蓄的钱数×,设甲储蓄x元,乙储蓄(620﹣x)元,列并解方程即可. 解答: 解:设甲储蓄x元,乙储蓄(620﹣x)元, x=(620﹣x)×, x=465﹣x, x=465, x÷=465÷, x=300. 乙储蓄:620﹣300=320(元). 答;甲储蓄300元,乙储蓄320元. 故答案为:300,320. 点评: 解决此题的关键是找出数量间的相等关系,设一个未知数为x,另一个用含有未知数x表示,列并解方程即可. 查看更多