2011年高考数学人教版全国卷

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2011年高考数学人教版全国卷

‎2011年数学人教版全国卷 一、选择题 ‎1、(全国Ⅱ理8)曲线在点(0,2)处的切线与直线和围成的三角形的面积为 ‎(A) (B) (C) (D)1‎ ‎2、(全国新课标理10)已知a,b均为单位向量,其夹角为,有下列四个命题 ‎ ‎ ‎ ‎ 其中真命题是 ‎(A) (B) (C) (D) ‎ ‎3、(全国Ⅱ理9)设是周期为2的奇函数,当时,,则 ‎(A) (B) (C) (D)‎ ‎4、(全国Ⅱ理2)函数=(≥0)的反函数为 ‎(A)=(∈R) (B)=(≥0) (C)=(∈R) (D)=(≥0)‎ ‎5、(全国Ⅰ文9)设偶函数f(x)满足f(x)=2x-4 (x0),则= ‎ ‎ (A) (B)‎ ‎(C) (D)‎ ‎6、(全国Ⅰ文4)曲线在点(1,0)处的切线方程为 ‎ ‎ (A) (B)‎ ‎ (C) (D)‎ ‎7、(全国Ⅰ理12)函数的图像与函数的图像所有交点的横坐标之和等于 ‎ (A)2 (B) 4 (C) 6 (D)8‎ ‎8、(全国Ⅰ理9)由曲线,直线及轴所围成的图形的面积为 ‎ ‎(A) (B)4 (C) (D)6‎ ‎9、(全国Ⅰ理2)下列函数中,既是偶函数又在单调递增的函数是 ‎ ‎(A) (B) (C) (D) ‎ 二、解答题 ‎10、(全国Ⅱ理22)(Ⅰ)设函数,证明:当>0时,>0;‎ ‎(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为.证明:<<.‎ ‎11、(全国Ⅰ理21)已知函数,曲线在点处的切线方程为。‎ ‎(Ⅰ)求、的值;‎ ‎(Ⅱ)如果当,且时,,求的取值范围。‎ ‎12、(全国Ⅱ文20)已知函数 ‎(Ⅰ)证明:曲线 ‎(Ⅱ)若,求的取值范围。‎ ‎13、(全国Ⅰ文21)设函数 ‎(Ⅰ)若a=,求的单调区间;‎ ‎(Ⅱ)若当≥0时≥0,求a的取值范围 三、选择题 ‎14、全国Ⅰ文椭圆的离心率为 ‎ ‎(A) (B) (C) (D)‎ ‎15、曲线,直线及轴所围成的图形的面积为 ‎ ‎(A) (B)4 (C) (D) 6‎ ‎16、全国Ⅰ理(7)设直线L过双曲线C的一个焦点,且与C的一条对称轴垂直,L与C交于A ,B两点,为C的实轴长的2倍,则C的离心率为 ‎ ‎(A) (B) (C)2 (D)3‎ 四、填空题 ‎17、在平面直角坐标系中,椭圆的中心为原点,焦点在轴上,离心率为。过的直线L交C于两点,且的周长为16,那么的方程为 。‎ 五、解答题 ‎18、(本小题满分10分)选修4-4:坐标系与参数方程 在直角坐标系xOy中,曲线的参数方程为为参数),M为上的动点,P点满足,点P的轨迹为曲线.‎ ‎(I)求的方程;‎ ‎(II)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求|AB|.‎ ‎19、(本小题满分12分)‎ ‎ 在平面直角坐标系xOy中,已知点A(0,-1),B点在直线y = -3上,M点满足, ,M点的轨迹为曲线C。‎ ‎(Ⅰ)求C的方程;‎ ‎(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值。‎ ‎20、(本小题满分12分)‎ 在平面直角坐标系xOy中,曲线与坐标轴的交点都在圆C上.‎ ‎(I)求圆C的方程;‎ ‎(II)若圆C与直线交于A,B两点,且求a的值.‎ 六、选择题 ‎21、(全国大纲理6)已知直二面角α− ι−β,点A∈α,AC⊥ι,C为垂足,B∈β,BD⊥ι,D为垂足.若AB=2,AC=BD=1,则D到平面ABC的距离等于 ‎ A. B. C. D.1 ‎ ‎22、(全国大纲理10)已知抛物线C:的焦点为F,直线与C交于A,B两点.则=‎ ‎ A. B. C. D.‎ ‎23、(全国新课标理7)已知直线l过双曲线C的一个焦点,且与C的对称轴垂直,l与C交于A,B两点,为C的实轴长的2倍,C的离心率为 ‎(A) (B) (C) 2 (D) 3‎ ‎24、(全国新课标理6)。在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为 ‎25、(全国大纲理11)已知平面α截一球面得圆M,过圆心M且与α成二面角的平面β截该球面得圆N.若该球面的半径为4,圆M的面积为4,则圆N的面积为 ‎ A.7 B.‎9‎ C.11 D.13‎ 七、填空题 ‎26、(全国新课标理15)。已知矩形ABCD的顶点都在半径为4的球O的球面上,且AB=6,BC=,则棱锥O-ABCD的体积为_____________.‎ 八、解答题 ‎27、(全国大纲理19) ‎ 如图,四棱锥中, ,,侧面为等边三角形,.‎ ‎(Ⅰ)证明:;‎ ‎(Ⅱ)求与平面所成角的大小.‎ ‎28、(全国新课标理18)‎ 如图,四棱锥中,底面ABCD为平行四边形,‎ ‎,,底面ABCD.‎ ‎(I)证明:;‎ ‎(II)若PD=AD,求二面角A-PB-C的余弦值.‎ ‎29、(全国新课标理14)(14) 在平面直角坐标系xOy中,椭圆C的中心为原点,焦点在x轴上,离心率为.过点的直线l交C于A,B两点,且的周长为16,那么C的方程为_________.‎ ‎30、(全国大纲理21) ‎ 已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足 ‎(Ⅰ)证明:点P在C上;‎ ‎(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.‎ ‎31、(全国新课标理20) ‎ 在平面直角坐标系xOy中, 已知点A(0,-1),B点在直线上,M点满足,,M点的轨迹为曲线C.‎ ‎(I)求C的方程;‎ ‎(II)P为C上动点,为C在点P处的切线,求O点到距离的最小值.‎ ‎32、(全国大纲理15)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = .‎ 九、选择题 ‎33、全国课标文(6)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )‎ ‎(A) () (B) (C) (D)‎ 十、解答题 ‎34、全国课标文(19)(本小题满分12分)‎ 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:‎ A配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎8‎ ‎20‎ ‎42‎ ‎22‎ ‎8‎ B配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎4‎ ‎12‎ ‎42‎ ‎32‎ ‎10‎ ‎(I)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为 估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.‎ ‎35、全国文19.(本小题满分l2分)(注意:在试题卷上作答无效)‎ ‎ 根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立。‎ ‎ (I)求该地1位车主至少购买甲、乙两种保险中的1种概率;‎ ‎ (II)求该地的3位车主中恰有1位车主甲、乙两种保险都不购买的概率。‎ 十一、选择题 ‎36、(全国新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ‎(A) (B) (C) (D)‎ ‎37、的展开式中各项系数的和为2,则该展开式中常数项为 ‎(A)-40 (B)-20 (C)20 (D)40‎ ‎38、全国Ⅰ理 ‎ 有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为 ‎(A) (B) (C) (D)‎ 十二、解答题 ‎39、(全国大纲理18)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3,设各车主购买保险相互独立 ‎(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;‎ ‎(Ⅱ)X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 ‎ ‎40、(全国新课标理19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:‎ A配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎8‎ ‎20‎ ‎42‎ ‎22‎ ‎8‎ B配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎4‎ ‎12‎ ‎42‎ ‎32‎ ‎10‎ ‎(I)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元).求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).‎ ‎41、全国Ⅰ文 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:‎ A配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎8‎ ‎20‎ ‎42‎ ‎22‎ ‎8‎ B配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎4‎ ‎12‎ ‎42‎ ‎32‎ ‎10‎ ‎(I)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为 估计用B配方生产的一件产品的利润大于0的概率,并求用B配方生产的上述100件产品平均一件的利润.‎ ‎42、(本小题满分12分)‎ 某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:‎ A配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎8‎ ‎20‎ ‎42‎ ‎22‎ ‎8‎ B配方的频数分布表 指标值分组 ‎[90,94)‎ ‎[94,98)‎ ‎[98,102)‎ ‎[102,106)‎ ‎[106,110]‎ 频数 ‎4‎ ‎12‎ ‎42‎ ‎32‎ ‎10‎ ‎(I)分别估计用A配方,B配方生产的产品的优质品率;‎ ‎(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为 从用B配方生产的产品中任取一件,其利润记为X(单位:元).求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).‎ 十三、选择题 ‎43、(全国大纲理5)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于 ‎ A. B. C. D. ‎ ‎44、(全国新课标理5)已知角的顶点与原点重合,始边与x轴的正半轴重合,终边在直线上,则=‎ ‎(A) (B) (C) (D)‎ ‎45、(全国新课标理11)设函数的最小正周期为,且则 ‎(A)在单调递减 (B)在单调递减 ‎(C)在单调递增 (D)在单调递增 十四、填空题 ‎46、(全国新课标理16)中,,则AB+2BC的最大值为_________.‎ ‎47、(全国大纲理14)已知a∈(,),sinα=,则tan2α= ‎ 十五、解答题 ‎48、(全国大纲理17)‎ ‎ △ABC的内角A、B、C的对边分别为a、b、c.己知A—C=90°,a+c=b,求 C. ‎ ‎ ‎ ‎49、(全国新课标理17) ‎ 已知等比数列的各项均为正数,且.‎ ‎(I)求数列的通项公式.‎ ‎(II)设,求数列的前n项和.‎ ‎50、(全国大纲理20) ‎ 设数列满足且 ‎(Ⅰ)求的通项公式;‎ ‎(Ⅱ)设 以下是答案 一、选择题 ‎1、A ‎【命题意图】:本小题主要考查导数的求法、导数的几何意义及过曲线上一点切线的方程的求法。‎ ‎【解析】,故曲线在点(0,2)处的切线方程为 ‎,易得切线与直线和围成的三角形的面积为。‎ ‎2、A ‎3、A ‎【命题意图】:本小题主要考查了函数的奇偶性、周期性的概念。‎ ‎【解析】。‎ ‎4、B ‎【命题意图】:本小题主要考查函数与反函数概念及求法特别要注意反函数的定义域即原函数的值域。‎ ‎【解析】由=,得=.函数=(≥0)的反函数为=.(≥0)‎ ‎5、B ‎6、A ‎7、D ‎8、C ‎9、B 二、解答题 ‎10、本小题主要考查函数、导数、不等式证明及等可能事件的概率等知识。通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力.‎ ‎【解析】(Ⅰ),(仅当时)‎ 故函数在单调递增.当时,,故当>0时,>0.‎ ‎(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,连续抽取20次,则抽得的20个号码互不相同的概率为,要证<()19<.‎ 先证: 即证 即证而 ‎ ‎………‎ 所以. 即 再证:,即证,即证,即证 由(Ⅰ),当>0时,>0.‎ 令则,即 综上有:‎ ‎11、解:(Ⅰ),由于直线的斜率为,且过点,‎ ‎ 故即 解得,。‎ ‎(Ⅱ)由(Ⅰ)知,所以。‎ 考虑函数,则。‎ ‎(i)设,由知,当时,。而,故 当时,,可得;‎ 当x(1,+)时,h(x)<0,可得 h(x)>0‎ 从而当x>0,且x1时,f(x)-(+)>0,即f(x)>+.‎ ‎(ii)设00,故 (x)>0,而 h(1)=0,故当x(1,)时,h(x)>0,可得h(x)<0,与题设矛盾。‎ ‎(iii)设k1.此时(x)>0,而h(1)=0,故当x(1,+)时,h(x)>0,可得 ‎ h(x)<0,与题设矛盾。综合得,k的取值范围为(-,0]‎ ‎12、(Ⅰ) ,,又 曲线的切线方程是:,在上式中令,得 所以曲线 ‎(Ⅱ)由得,(i)当时,没有极小值;‎ ‎(ii)当或时,由得 故。由题设知,当时,不等式 无解;‎ 当时,解不等式得 综合(i)(ii)得的取值范围是。‎ ‎13、解:‎ ‎(Ⅰ)时,,。当时;当时,;当时,。故在,单调增加,在(-1,0)单调减少。‎ ‎(Ⅱ)。令,则。若,则当时,,为减函数,而,从而当x≥0时≥0,即≥0.‎ 若,则当时,,为减函数,而,从而当时<0,即<0.综合得的取值范围为 三、选择题 ‎14、D ‎15、C ‎16、B 四、填空题 ‎17、‎ 五、解答题 ‎18、解:(I)设P(x,y),则由条件知M().由于M点在C1上,所以 ‎ 即 从而的参数方程为(为参数)‎ ‎(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为。‎ 射线与的交点的极径为,‎ 射线与的交点的极径为。所以.‎ ‎19、解:‎ ‎ (Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).‎ 所以=(-x,-1-y), =(0,-3-y), =(x,-2).‎ 再由题意可知(+)• =0, 即(-x,-4-2y)• (x,-2)=0.‎ 所以曲线C的方程式为y=x-2.‎ ‎(Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x 因此直线的方程为,即。‎ 则O点到的距离.又,所以 当=0时取等号,所以O点到距离的最小值为2.‎ ‎20、解:‎ ‎ (Ⅰ)曲线与y轴的交点为(0,1),与x轴的交点为 ‎(‎ 故可设C的圆心为(3,t),则有解得t=1.‎ 则圆C的半径为所以圆C的方程为 ‎(Ⅱ)设A(),B(),其坐标满足方程组:‎ 消去y,得到方程 由已知可得,判别式 因此,从而 ①‎ 由于OA⊥OB,可得又所以 ‎ ②;由①,②得,满足故 六、选择题 ‎21、C ‎22、D ‎23、B ‎24、D ‎25、D 七、填空题 ‎26、‎ 八、解答题 ‎27、解法一:‎ ‎ (I)取AB中点E,连结DE,则四边形BCDE为矩形,DE=CB=2,‎ ‎ ‎ ‎ 连结SE,则 ‎ 又SD=1,故,‎ ‎ 所以为直角。 …………3分 ‎ 由,‎ ‎ 得平面SDE,所以。‎ ‎ SD与两条相交直线AB、SE都垂直。‎ ‎ 所以平面SAB。 …………6分 ‎ (II)由平面SDE知,‎ ‎ 平面平面SED。‎ ‎ 作垂足为F,则SF平面ABCD,‎ ‎ ‎ ‎ 作,垂足为G,则FG=DC=1。‎ ‎ 连结SG,则,‎ ‎ 又,‎ ‎ 故平面SFG,平面SBC平面SFG。 …………9分 ‎ 作,H为垂足,则平面SBC。‎ ‎ ,即F到平面SBC的距离为 ‎ 由于ED//BC,所以ED//平面SBC,E到平面SBC的距离d也有 ‎ 设AB与平面SBC所成的角为α,‎ ‎ 则 …………12分 解法二:‎ ‎ 以C为坐标原点,射线CD为x轴正半轴,建立如图所示的空间直角坐标系C—xyz。‎ 设D(1,0,0),则A(2,2,0)、B(0,2,0)。‎ 又设 ‎ (I),,‎ 由得 故x=1。‎ 由 又由 即 …………3分 于是,‎ 故 所以平面SAB。 …………6分 ‎ (II)设平面SBC的法向量,‎ 则 又 故 …………9分 取p=2得。‎ 故AB与平面SBC所成的角为 ‎28、解:‎ ‎(Ⅰ)因为, 由余弦定理得 从而BD2+AD2= AB2,故BDAD 又PD底面ABCD,可得BDPD 所以BD平面PAD. 故 PABD ‎(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则 ‎,,,.‎ 设平面PAB的法向量为n=(x,y,z),则 ‎ 即 ‎ 因此可取n=‎ 设平面PBC的法向量为m,则 ‎ 可取m=(0,-1,) ‎ 故二面角A-PB-C的余弦值为 ‎ ‎29、‎ ‎30、解:‎ ‎(I)F(0,1),的方程为,‎ 代入并化简得 ‎ …………2分 设 则 由题意得 所以点P的坐标为 经验证,点P的坐标为满足方程 故点P在椭圆C上。 …………6分 ‎ (II)由和题设知, ‎ PQ的垂直平分线的方程为 ‎ ①‎ 设AB的中点为M,则,AB的垂直平分线为的方程为 ‎ ②‎ 由①、②得的交点为。 …………9分 故|NP|=|NA|。‎ 又|NP|=|NQ|,|NA|=|NB|,‎ 所以|NA|=|NP|=|NB|=|MQ|,‎ 由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上 …………12分 ‎31、解:‎ ‎(Ⅰ)设M(x,y),由已知得B(x,-3),A(0,-1).‎ ‎ 所以=(-x,-1-y), =(0,-3-y), =(x,-2).‎ ‎ 再由题意可知(+)• =0, 即(-x,-4-2y)• (x,-2)=0.‎ ‎ 所以曲线C的方程式为y=x-2.‎ ‎ (Ⅱ)设P(x,y)为曲线C:y=x-2上一点,因为y=x,所以的斜率为x 因此直线的方程为,即.‎ 则O点到的距离.又,所以 ‎ ‎ ‎ 当=0时取等号,所以O点到距离的最小值为2.‎ ‎32、6‎ 九、选择题 ‎33、A 十、解答题 ‎34、解 ‎(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3.‎ 由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42‎ ‎(Ⅱ)由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.‎ 用B配方生产的产品平均一件的利润为 ‎(元)‎ ‎35、解:记A表示事件:该地的1位车主购买甲种保险;‎ ‎ B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;‎ ‎ C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;‎ ‎ D表示事件:该地的1位车主甲、乙两种保险都不购买;‎ ‎ E表示事件:该地的3位车主中恰有1位车主甲、乙两种保险都不购买。‎ ‎ (I) …………3分 ‎ …………6分 ‎ (II) …………9分 ‎ …………12分 十一、选择题 ‎36、A ‎37、D ‎38、A 十二、解答题 ‎39、解:记A表示事件:该地的1位车主购买甲种保险;‎ ‎ B表示事件:该地的1位车主购买乙种保险但不购买甲种保险;‎ ‎ C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种;‎ ‎ D表示事件:该地的1位车主甲、乙两种保险都不购买;‎ ‎ (I) …………3分 ‎ …………6分 ‎ (II)‎ ‎,即X服从二项分布, …………10分 所以期望 …………12分 ‎40、解 ‎(Ⅰ)由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3.‎ 由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42‎ ‎(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,,054,0.42,因此 P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,‎ 即X的分布列为 ‎-2‎ ‎2‎ ‎4‎ ‎0.04‎ ‎0.54‎ ‎0.42‎ X的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.68‎ ‎41、解 ‎(Ⅰ)由试验结果知,用A配方生产的产品中优质的频率为,所以用A配方生产的产品的优质品率的估计值为0.3.‎ 由试验结果知,用B配方生产的产品中优质品的频率为,所以用B 配方生产的产品的优质品率的估计值为0.42‎ ‎(Ⅱ)由条件知用B配方生产的一件产品的利润大于0当且仅当其质量指标值t≥94,由试验结果知,质量指标值t≥94的频率为0.96,所以用B配方生产的一件产品的利润大于0的概率估计值为0.96.‎ 用B配方生产的产品平均一件的利润为 ‎(元)‎ ‎42、解 ‎(Ⅰ)由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3。‎ 由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42[来源:学.科.网Z.X.X.K]‎ ‎(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间 的频率分别为0.04,,054,0.42,因此 ‎ P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,‎ 即X的分布列为 X的数学期望值EX=-2×0.04+2×0.54+4×0.42=2.68‎ 十三、选择题 ‎43、C ‎44、B ‎45、A 十四、填空题 ‎46、‎ ‎47、‎ 十五、解答题 ‎48、解:由及正弦定理可得 ‎ …………3分 ‎ 又由于故 ‎ ‎ ‎ ‎ ‎ …………7分 ‎ ‎ ‎ ‎ ‎ 因为,‎ ‎ 所以 ‎49、解:‎ ‎(Ⅰ)设数列{an}的公比为q,由得所以.‎ 由条件可知c>0,故.‎ 由得,所以.‎ 故数列{an}的通项式为an=.‎ ‎(Ⅱ )‎ 故 所以数列的前n项和为 ‎50、解:‎ ‎ (I)由题设 ‎ 即是公差为1的等差数列。‎ ‎ 又 ‎ 所以 ‎ (II)由(I)得 ‎ , …………8分 ‎ …………12分
查看更多

相关文章

您可能关注的文档