- 2021-05-28 发布 |
- 37.5 KB |
- 31页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学二轮复习特色专题训练专题03直击函数压轴题中零点问题理
专题 03 直击函数压轴题中零点问题 一、解答题 1.已知函数 2ln 1 0f x x a x a . (1)讨论 f x 的单调性; (2)若 f x 在区间 0,1 内有唯一的零点 0x ,证明: 3 12 0e x e . 【答案】(1)答案见解析;(2)证明见解析. 【解析】试题分析:(1)求出函数的导数,通过讨论 a 的范围,求出函数的单调区间即可; (2)依题可知 1 0f ,若 f x 在区间 0,1 内有唯一的零点 0x ,由(1)可知 2a , 且 0 1 10, 2 x x ,于是: 2 0 0 1 0lnx a x ①, 2 0 02 2 1 0ax ax ② 由①②得 0 0 0 1ln 0 2 xx x ,设 g(x)=lnx− 1 2 x x ,(x∈(0,1)),求出函数的导数,根据函数的单调性证明 即可. (2)依题可知 1 0f ,若 f x 在区间 0,1 内有唯一的零点 0x ,由(1)可知 2a , 且 0 1 10, 2 x x . 于是: 2 0 0 1 0lnx a x ① 2 0 02 2 1 0ax ax ② 由①②得 0 0 0 1ln 0 2 xx x ,设 1ln , 0,1 2 xg x x x x , 则 2 2 1 2 xg x x ,因此 g x 在 10, 2 上单调递减, 又 3 3 2 2 4 0 2 eg e , 1 1 3 0 2 eg e 根据零点存在定理,故 3 12 0e x e . 点睛:本题考查了函数的单调性,零点问题,考查导数的应用以及不等式的证明,零点存在性定理,考查分 类讨论思想,转化思想,构造函数的解题方法. 2.设函数 f(x)=x2 +bx-1(b∈R). (1)当 b=1 时证明:函数 f(x)在区间 1 ,1 2 内存在唯一零点; (2)若当 x∈[1,2],不等式 f(x)<1 有解.求实数 b的取值范围. 【答案】(1)见解析;(2) ,1 【解析】试题分析:(1)先根据对称轴与定义区间位置关系确定函数 f(x)在区间 1 ,1 2 单调性,再根据区 间端点函数值异号,结合零点存在定理确定零点个数(2)先分离变量化为对应函数最值问题: 2b x x , 再根据函数单调性确定函数最小值,即得实数 b 的取值范围. (2)由题意可知 x2+bx-1<1 在区间[1,2]上有解, 所以 b< = -x在区间[1,2]上有解. 令 g(x)= -x,可得 g(x)在区间[1,2]上递减, 所以 b查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档