- 2021-05-26 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2014-2017高考真题选修45不等式选讲
选修4-5 不等式选讲 考点 不等式选讲 1.(2017•新课标Ⅰ,23)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(10分) (1)当a=1时,求不等式f(x)≥g(x)的解集; (2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围. 1.(1)解:当a=1时,f(x)=﹣x2+x+4,是开口向下,对称轴为x= 的二次函数, g(x)=|x+1|+|x﹣1|= , 当x∈(1,+∞)时,令﹣x2+x+4=2x,解得x= ,g(x)在(1,+∞)上单调递增,f(x)在(1,+∞)上单调递减,∴此时f(x)≥g(x)的解集为(1, ]; 当x∈[﹣1,1]时,g(x)=2,f(x)≥f(﹣1)=2. 当x∈(﹣∞,﹣1)时,g(x)单调递减,f(x)单调递增,且g(﹣1)=f(﹣1)=2. 综上所述,f(x)≥g(x)的解集为[﹣1, ]; (2)依题意得:﹣x2+ax+4≥2在[﹣1,1]恒成立,即x2﹣ax﹣2≤0在[﹣1,1]恒成立,则只需 ,解得﹣1≤a≤1, 故a的取值范围是[﹣1,1]. 2.(2017•新课标Ⅱ,23)已知a>0,b>0,a3+b3=2,证明: (Ⅰ)(a+b)(a5+b5)≥4; (Ⅱ)a+b≤2. 2.证明:(Ⅰ)由柯西不等式得:(a+b)(a5+b5)≥( + )2=(a3+b3)2≥4, 当且仅当 = ,即a=b=1时取等号, (Ⅱ)∵a3+b3=2, ∴(a+b)(a2﹣ab+b2)=2, ∴(a+b)[(a+b)2﹣3ab]=2, ∴(a+b)3﹣3ab(a+b)=2, ∴ =ab, 由均值不等式可得: =ab≤( )2 , ∴(a+b)3﹣2≤ , ∴ (a+b)3≤2, ∴a+b≤2,当且仅当a=b=1时等号成立. 3.(2017•新课标Ⅲ,23)已知函数f(x)=|x+1|﹣|x﹣2|. (Ⅰ)求不等式f(x)≥1的解集; (Ⅱ)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围. 3.(Ⅰ)∵f(x)=|x+1|﹣|x﹣2|= ,f(x)≥1, ∴当﹣1≤x≤2时,2x﹣1≥1,解得1≤x≤2; 当x>2时,3≥1恒成立,故x>2; 综上,不等式f(x)≥1的解集为{x|x≥1}. (Ⅱ)原式等价于存在x∈R使得f(x)﹣x2+x≥m成立, 即m≤[f(x)﹣x2+x]max , 设g(x)=f(x)﹣x2+x. 由(1)知,g(x)= , 当x≤﹣1时,g(x)=﹣x2+x﹣3,其开口向下,对称轴方程为x= >﹣1, ∴g(x)≤g(﹣1)=﹣1﹣1﹣3=﹣5; 当﹣1<x<2时,g(x)=﹣x2+3x﹣1,其开口向下,对称轴方程为x= ∈(﹣1,2), ∴g(x)≤g( )=﹣ + ﹣1= ; 当x≥2时,g(x)=﹣x2+x+3,其开口向下,对称轴方程为x= <2, ∴g(x)≤g(2)=﹣4+2=3=1; 综上,g(x)max= , ∴m的取值范围为(﹣∞, ]. 4.(2017•江苏,21D)已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8. 4. 证明:∵a2+b2=4,c2+d2=16, 令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ. ∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号. 因此ac+bd≤8. 5.(2016·全国Ⅰ,24)已知函数f(x)=|x+1|-|2x-3|. (1)在图中画出y=f(x)的图象; (2)求不等式|f(x)|>1的解集. 5.解(1)f(x)=y=f(x)的图象如图所示. (2)当f(x)=1时,可得x=1或x=3; 当f(x)=-1时,可得x=或x=5, 故f(x)>1的解集为{x|1查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档