- 2021-05-25 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届一轮复习苏教版函数与方程学案
§2.9 函数与方程 考情考向分析 利用函数零点的存在性定理或函数的图象,对函数是否存在零点进行判断或利用零点(方程实根)的存在情况求相关参数的范围,是高考的热点,题型以填空题为主,也可和导数等知识交汇出现解答题,中高档难度. 1.函数的零点 (1)函数零点的定义 对于函数y=f(x)(x∈D),把使f(x)=0的实数x叫做函数y=f(x)(x∈D)的零点. (2)三个等价关系 方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点. (3)函数零点的判定(零点存在性定理) 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个 c 也就是方程f(x)=0的根. 2.二次函数y=ax2+bx+c (a>0)的图象与零点的关系 Δ>0 Δ=0 Δ<0 二次函数y=ax2+bx+c (a>0)的图象 与x轴的交点 (x1,0),(x2,0) (x1,0) 无交点 零点个数 2 1 0 概念方法微思考 函数f(x)的图象连续不断,是否可得到函数f(x)只有一个零点? 提示 不能. 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)函数的零点就是函数的图象与x轴的交点.( × ) (2)函数y=f(x)在区间(a,b)内有零点(函数图象连续不断),则f(a)·f(b)<0.( × ) (3)只要函数有零点,我们就可以用二分法求出零点的近似值.( × ) (4)f(x)=x2,g(x)=2x,h(x)=log2x,当x∈(4,+∞)时,恒有h(x)查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档