- 2021-05-25 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
长沙市中考数学历年最后两道压轴题集锦
2009 25.(本题满分10分) 为了扶持大学生自主创业,市政府提供了80万元无息贷款,用于某大学生开办公司生产并销售自主研发的一种电子产品,并约定用该公司经营的利润逐步偿还无息贷款.已知该产品的生产成本为每件40元,员工每人每月的工资为2500元,公司每月需支付其它费用15万元.该产品每月销售量(万件)与销售单价(元)之间的函数关系如图所示. (1)求月销售量(万件)与销售单价(元)之间的函数关系式; (2)当销售单价定为50元时,为保证公司月利润达到5万元(利润=销售额-生产成本-员工工资-其它费用),该公司可安排员工多少人? (3)若该公司有80名员工,则该公司最早可在几个月后还清无息贷款? 4 2 1 40 60 80 x (元) (万件) y O 2010 25.已知:二次函数的图象经过点(1,0),一次函数图象经过原点和点(1,-b),其中且、为实数. (1)求一次函数的表达式(用含b的式子表示); (2)试说明:这两个函数的图象交于不同的两点; (3)设(2)中的两个交点的横坐标分别为x1、x2,求| x1-x2 |的范围. 26.如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上, cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒. (1)用t的式子表示△OPQ的面积S; (2)求证:四边形OPBQ的面积是一个定值,并求出这个定值; B A P x C Q O y 第26题图 (3)当△OPQ与△PAB和△QPB相似时,抛物线经过B、P两点,过线段BP上一动点M作轴的平行线交抛物线于N,当线段MN的长取最大值时,求直线MN把四边形OPBQ分成两部分的面积之比.[来源:Zxxk.Com] 2011 25.使得函数值为零的自变量的值称为函数的零点。例如,对于函数,令y=0,可得x=1,我们就说1是函数的零点。 己知函数 (m为常数)。 (1)当=0时,求该函数的零点; (2)证明:无论取何值,该函数总有两个零点; (3)设函数的两个零点分别为和,且,此时函数图象与x轴的交点分别为A、B(点A在点B左侧),点M在直线上,当MA+MB最小时,求直线AM的函数解析式。 26.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。 (1)求点B的坐标; (2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值; (3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。 2012 25.在长株潭建设两型社会的过程中,为推进节能减排,发展低碳经济,我市某公司以25万元购得某项节能产品的生产技术后,再投入100万元购买生产设备,进行该产品的生产加工.已知生产这种产品的成本价为每件20元.经过市场调研发现,该产品的销售单价定在25元到30元之间较为合理,并且该产品的年销售量y(万件)与销售单价x(元)之间的函数关系式为: (年获利=年销售收入﹣生产成本﹣投资成本) (1)当销售单价定为28元时,该产品的年销售量为多少万件? (2)求该公司第一年的年获利W(万元)与销售单价x(元)之间的函数关系式,并说明投资的第一年,该公司是盈利还是亏损?若盈利,最大利润是多少?若亏损,最小亏损是多少? (3)第二年,该公司决定给希望工程捐款Z万元,该项捐款由两部分组成:一部分为10万元的固定捐款;另一部分则为每销售一件产品,就抽出一元钱作为捐款.若除去第一年的最大获利(或最小亏损)以及第二年的捐款后,到第二年年底,两年的总盈利不低于67.5万元,请你确定此时销售单价的范围. 26.如图半径分别为m,n(0<m<n)的两圆⊙O1和⊙O2相交于P,Q两点,且点P(4,1),两圆同时与两坐标轴相切,⊙O1与x轴,y轴分别切于点M,点N,⊙O2与x轴,y轴分别切于点R,点H. (1)求两圆的圆心O1,O2所在直线的解析式; (2)求两圆的圆心O1,O2之间的距离d; (3)令四边形PO1QO2的面积为S1,四边形RMO1O2的面积为S2. 试探究:是否存在一条经过P,Q两点、开口向下,且在x轴上截得的线段长为的抛物线?若存在,请求出此抛物线的解析式;若不存在,请说明理由. 2013 25.设是任意两个不等实数,我们规定:满足不等式的实数的所有取值的全体叫做闭区间,表示为.对于一个函数,如果它的自变量与函数值满足:当时,有,我们就称此函数是闭区间上的“闭函数”. (1)反比例函数是闭区间上的“闭函数”吗?请判断并说明理由; (2)若一次函数是闭区间上的“闭函数”,求此函数的解析式; (3)若二次函数是闭区间上的“闭函数”,求实数的值. 26.如图,在平面直角坐标系中,直线与轴,轴分别交于点A,点B,动点P在第一象限内,由点P向轴,轴所作的垂线PM,PN(垂足为M,N)分别与直线AB相交于点E,点F,当点P运动时,矩形PMON的面积为定值2. (1)求的度数; (2)求证:△∽△; (3)当点E,F都在线段AB上时,由三条线段 AE,EF,BF组成一个三角形,记此三角 形的外接圆面积为,△的面积为. 试探究:是否存在最小值?若存在, 请求出该最小值;若不存在,请说明理由. (第26题) 2014 25.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(-2,-2),,…都是“梦之点”,显然“梦之点”有无数个。21教育名师原创作品 (1)若点P(2,m)是反比例函数(n为常数,n≠0)的图像上的“梦之点”,求这个反比例函数的解析式;21*cnjy*com (2)函数(k,s为常数)的图像上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由; (3)若二次函数(a,b是常数,a>0)的图像上存在两个“梦之点”A, B,且满足-2<<2,=2,令,试求t的取值范围。 26.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),【来源:21cnj*y.co*m】 (1)求的值; (收集整理cjzl) (2)求证:点P在运动过程中,⊙P始终与轴相交; y x P● A M O N (3)设⊙P与轴相交于M,N (<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标。 答案解析 2009 25.解:(1)当时,令, 则解得 . 同理,当时,. 4分 (直接写出这个函数式也记4分.) 2010 25.解:(1)∵一次函数过原点∴设一次函数的解析式为y=kx ∵一次函数过(1,-b) ∴y=-bx ……………………………3分[来源:学*科*网] (2)∵y=ax2+bx-2过(1,0)即a+b=2 …………………………4分 由得 ……………………………………5分 ① ∵△= ∴方程①有两个不相等的实数根∴方程组有两组不同的解 ∴两函数有两个不同的交点. ………………………………………6分 (3)∵两交点的横坐标x1、x2分别是方程①的解 ∴ ∴= 或由求根公式得出 ………………………………………………………8分 ∵a>b>0,a+b=2 ∴2>a>1 令函数 ∵在1查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档