- 2021-05-25 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学常考的100个基础知识点
高考数学常考的100个基础知识点 广州市育才中学 邓军民 整理 1.德摩根公式CU(A∩B)= CuA∪CuB;。 2.A∩B=AA∪B=BABC U BC U AA∩C U B=φC U A∪B=R 3.card(A∪B)=cardA+cardB-card(A∩B) 4.二次函数的解析式的三种形式 ①一般式f(x)=ax2+bx+c(a≠0); ②顶点式f(x)=a(x-h)2+k(a≠0); ③零点式f(x)=a(x-x1)(x-x2)(a≠0)。 5.设x1,x2∈[a,b],x1≠x2 那么 f(x)在[a,b]上是增函数; f(x)在[a,b]上是减函数。 设函数y = f(x)在某个区间内可导,如果f ′(x) > 0 ,则f(x) 为增函数;如果f ′(x) <0 ,则f(x) 为减函数。 6.函数y= f(x) 的图象的对称性: ① 函数y= f(x) 的图象关于直线x = a 对称 f(a+x)= f(a-x)f(2a-x)= f(x)。 7.两个函数图象的对称性: (1)函数y= f(x)与函数y= f(-x)的图象关于直线x = 0(即y轴)对称。 (2)函数y = f(x) 和y = f-1 (x) 的图象关于直线y=x 对称。 8.分数指数幂(a>0,m,n∈N*,且n>1)。 分数指数幂(a>0,m,n∈N*,且n>1)。 9.logaN=bab=N (a>0,a≠1,N>0) 10.对数的换底公式 ,推论 11.− ≥( 数列{ a n } 的前n 项的和为S n =a1+a2 +…+an )。 (注意此公式第2 行顺推与逆推的应用,这是递推数列的常用公式,可以达到不同的目的) 12.等差数列的通项公式an=a1+(n-1)d=dn+a1-d(n∈N*)* 其前n项和公式 13.等比数列的通项公式; 其前n项的和公式 或 (小心:解答题利用错位相减法时要特别注意讨论q=1的情况) 14.同角三角函数的基本关系式 sin2θ+ cos2θ=1,tanθ= 15.和角与差角公式 sin(α±β)=sinαcosβ±cosαsinβ; cos(α±β)=cosαcosβsinαsinβ; tan(α±β)。 (平方正弦公式); cos(α+β)cos(α−β)=cos2α−sin2β(平方余弦公式); (辅助角所在象限由点(a,b)的象限决定,)。(建议利用的正弦和余弦来确定其位于哪个象限,这样比较好理解) 16.二倍角公式sin 2α = 2sinα·cosα。 。 17.三角函数的周期公式 函数y=sin(ωx+),x∈R 及函数y= cos(ωx+),x∈R(A,ω,为常数,且A≠0,ω>0)的周期;函数,(A,,为常数,且A≠0,)的周期。(注意ω小于0的函数周期的求法) 18.正弦定理。(学会利用后面的2R) 19.余弦定理a2=b2+c2−2bccosA;b2=c2+a2−2cacosB;c2=a2+b2−2abcosC。 (注意其变形公式) 20.面积定理 (1)(分别表示a、b、c边上的高)。 (2)。 21.三角形内角和定理 在△ABC 中,有 。 (很多与三角形有关的恒等变形或者纯粹解三角形的题目中会用到这些关系) 22.平面两点间的距离公式 (A(),B())。 23.向量的平行与垂直 设,且b≠0,则 24.线段的定比分公式 设是线段P1P2的分点,λ是实数,且,则 (这个公式很重要,不要记错!) 25.三角形的重心坐标公式△ABC三个顶点的坐标分别为、,则△ABC的重心的坐标是。 26.点的平移公式(图形F上的任意一点P(x,y)在平移后图形上的对应点为,且的坐标为(h,k))。 (要注意区别新坐标、旧坐标,区别新方程和旧方程,不要混淆,解答题务必要体现以上公式的使用过程,关键步骤不要省) 27.常用不等式: (1)a,b∈R⇒a2+b2≥2ab(当且仅当a=b 时取“=”号)。 (2)a,b∈R+(当且仅当a=b时取“=”号)。 (3)a3+b3+c3≥3abc(a>0,b>0,c>0)。 (4)柯西不等式。(建议:了解一下,尝试用向量数量积的方法证明之) (5) 28.极值定理 已知x,y 都是正数,则有 (1)如果积xy是定值p,那么当x=y时和x+y有最小值; (2)如果和x+y是定值s,那么当x=y时积xy 有最大值。 29.一元二次不等式ax2 +bx+c >0(或<0)(a≠0,Δ=b2−4ac>0),如果a与ax2 +bx+c同号,则其解集在两根之外;如果a与ax2 + bx + c 异号,则其解集在两根之间。简言之:同号两根之外,异号两根之间。 ; ,或 (这类问题一般可以借助于韦达定理或者结合图象特点寻找约束条件就可以解决问题) 30.含有绝对值的不等式当a> 0时,有 或。 31.无理不等式 (1) (2) (3) 32.指数不等式与对数不等式 (1)当a>1时, ; (2)当00,α为直线AB的倾斜角,k为直线的斜率,以上化简思路再结合韦达定理使用,是很多圆锥曲线解答题的常用解题技巧) 45.圆锥曲线的对称问题:曲线F(x,y)=0关于点P()成中心对称的曲线是。 (可以利用重点坐标公式推导之)。 46.对于一般的二次曲线,用代,用代,用代入xy,用代x,用代入y即得方程 ,曲线的切线、切点弦方程均可由此方程得到。 47.共线向量定理 对空间任意两个向量a、b(b≠0 ),a∥b ⇔ 存在实数λ使a=λb。 48.对空间任一点O和不共线的三点A、B、C,满足,则四点P、A、B、C是共面⇔x+y+z=1。 49.空间两个向量的夹角公式cos=(,)。 50.直线AB 与平面所成角(为平面α的法向量)。 51.二面角α−l−β的平面角或(,为平面α,β的法向量)。 52.设AC是α内的任一条直线,且BC⊥AC,垂足为C,又设AO与AB所成的角为,AB与AC所成的角为,AO与AC所成的角为。则。 53.空间两点间的距离公式 若,则 。 54.异面直线间的距离 (l1,l2是两异面直线,其公垂向量为,C、D分别是l1,l2上任一点,d为l1,l2间的距离)。 55.点B到平面α的距离(为平面α的法向量,AB是面α的斜线,A∈α)。 56.面积射影定理 (平面多边形及其射影的面积分别是S、S',它们所在平面所成锐二面角的为θ)。 57.球的半径是R,则其体积是,其表面积是。 58.分类计数原理(加法原理) 。 59.分步计数原理(乘法原理) 。 60.排列数公式 。(n,m∈N*,且)。 61.排列恒等式 (1);(2);(3);(4);(5)。(建立了解,会用排列数公式推导之) 62.组合数公式。 63.组合数的两个性质 (1);(2) 64.组合恒等式 (1);(2);(3);(4);(5)。(建议了解,会用组合数公式推导之) 65.排列数与组合数的关系是: 66.二项式定理 ; 二项展开式的通项公式:(r=0,1,2…,n)。 (注意通项的下标) 67.等可能性事件的概率。 68.互斥事件A,B分别发生的概率的和P(A+B)=P(A)+P(B)。 69.n个互斥事件分别发生的概率的和 P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。 70.独立事件A,B同时发生的概率P(A·B)= P(A)·P(B)。 71.n个独立事件同时发生的概率P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。 72.n次独立重复试验中某事件恰好发生k次的概率。 73.离散型随机变量的分布列的两个性质: (1)(i=1,2,…);(2)。 74.数学期望 75.数学期望的性质: (1)E(aξ+b)=aE(ξ)+b; (2)若ξ~B(n,p),则Eξ= np。 (要将n 次独立重复实验有k 次发生这样一个问题与二项分布联系起来) 76.方差 (还有一个变形公式可以求方差,你记得吗?在下面会有的) 77.标准差。(了解,防止你看到标准差的符号不认识,呵呵) 78.方差的性质 (1); (2); (3)若,则。 79.正态分布密度函数,式中的实数,()是参数,分别表示个体的平均数与标准差。(了解即可) 80.标准正态分布密度函数。(了解即可,但是要注意其概率分布图的特点,包括阴影部分面积所表示的含义,考的概率不大,但是要防止考小题。) 81.对于N(μ,σ2),取值小于x的概率。 。(个人觉得:要理解之,考的概率不大,但是还是要防止出小题。) 82.特殊数列的极限 (1) (2) (3)(S无穷等比数列的和)。 84.函数的夹逼性定理 如果函数在点的附近满足: (1);(2)(常数),则。 本定理对于单侧极限和x→∞的情况仍然成立。 (个人觉得:有必要了解一下,防止出新题) 85.两个重要的极限 (1);(2)。 (个人觉得需要了解一下,防止出新题。看不懂也不要有压力,这是超范围的。) 86.f(x)在处的导数(或变化率或微商) 87.瞬时速度 。 88.瞬时加速度 。(注意这个物理意义) 89.在(a,b)的导数。 90.函数y = f(x) 在点处的导数是曲线在处的切线的斜率,相应的切线方程是。 91.几种常见函数的导数 (1)(C为常数) (2) (3) (4) (5);。 (6)。 92.复合函数的求导法则 设函数在点x处有导数,函数在点x处的对应点U处有导数,则复合函数在点x处有导数,且,或写作。 93.可导函数y = f(x) 的微分dy = (x)dx。 94.注意构造新的函数,再利用导数的有关性质来解题的解题技巧。 95.a+bi=c+di⇔a=c,b=d。(a,b,c,d∈R) 96.复数z=a+bi的模:|z|=|a+bi|=。 97.复数的四则运算法则 (1)(a+bi)+(c+di)=(a+c)+(b+d)i; (2)(a+bi)-(c+di)=(a-c)+(b-d)i; (3)(a+bi)(c+di)=(ac-bd)+(bc+ad)i; (4)(c+di≠0) 98.注意共轭复数的概念 99.注意实部和虚部的概念(虚部有没有包括i呢?) 100.注意极其共轭复数间的运算关系(具体见教材)查看更多