- 2021-05-24 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
全国统一高考数学试卷文科新课标Ⅰ解析
绝密★启用前 2019年普通高等学校招生全国统一考试 文科数学 注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。 3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.设,则= A. 2 B. C. D. 1 2.已知集合,则 A. B. C. D. 3.已知,则 A. B. C. D. 4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm 5.函数f(x)=在[—π,π]的图像大致为 A. B. C. D. 6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生 C. 616号学生 D. 815号学生 7.tan255°= A. -2- B. -2+ C. 2- D. 2+ 8.已知非零向量a,b满足=2,且(a–b)b,则a与b的夹角为 A. B. C. D. 9.如图是求的程序框图,图中空白框中应填入 A. A= B. A= C. A= D. A= 10.双曲线C:的 一条渐近线的倾斜角为130°,则C的离心率为 A. 2sin40° B. 2cos40° C. D. 11.△ABC的内角A,B,C的对边分别为a,b,c,已知asinA-bsinB=4csinC,cosA=-,则= A. 6 B. 5 C. 4 D. 3 12.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为 A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分。 13.曲线在点处的切线方程为___________. 14.记Sn为等比数列{an}的前n项和.若,则S4=___________. 15.函数的最小值为___________. 16.已知∠ACB=90°,P为平面ABC外一点,PC=2,点P到∠ACB两边AC,BC的距离均为,那么P到平面ABC的距离为___________. 三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。 (一)必考题:60分。 17.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表: 满意 不满意 男顾客 40 10 女顾客 30 20 (1)分别估计男、女顾客对该商场服务满意的概率; (2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:. P(K2≥k) 0.050 0.010 0.001 k 3.841 6.635 10.828 18.记Sn为等差数列{an}的前n项和,已知S9=-a5. (1)若a3=4,求{an}的通项公式; (2)若a1>0,求使得Sn≥an的n的取值范围. 19.如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求点C到平面C1DE的距离. 20.已知函数f(x)=2sinx-xcosx-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点; (2)若x∈[0,π]时,f(x)≥ax,求a的取值范围. 21.已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切. (1)若A在直线x+y=0上,求⊙M的半径. (2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由. (二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。 22.[选修4-4:坐标系与参数方程] 在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为. (1)求C和l的直角坐标方程; (2)求C上的点到l距离的最小值. 23.[选修4-5:不等式选讲] 已知a,b,c为正数,且满足abc=1.证明: (1); (2). 【答案】1C2C3B4B5D6C7D8B9A10D11A12B 13141516 17(1)由题中表格可知,50名男顾客对商场服务满意的有40人, 所以男顾客对商场服务满意率估计为, 50名女顾客对商场满意的有30人, 所以女顾客对商场服务满意率估计为, (2)由列联表可知, 所以能有的把握认为男、女顾客对该商场服务的评价有差异. 18(1)设等差数列的首项为,公差为, 根据题意有, 解答,所以, 所以等差数列的通项公式为; (2)由条件,得,即, 因为,所以,并且有,所以有, 由得,整理得, 因为,所以有,即, 解得, 所以的取值范围是: 19(1)连接, ,分别为,中点 为的中位线 且 又为中点,且 且 四边形为平行四边形 ,又平面,平面 平面 (2)在菱形中,为中点,所以, 根据题意有,, 因为棱柱为直棱柱,所以有平面, 所以,所以, 设点C到平面的距离为, 根据题意有,则有, 解得, 所以点C到平面的距离为. 20(1) 令,则 当时,令,解得: 当时,;当时, 在上单调递增;在上单调递减 又,, 即当时,,此时无零点,即无零点 ,使得 又在上单调递减 为,即在上唯一零点 综上所述:在区间存在唯一零点 (2)若时,,即恒成立 令 则, 由(1)可知,在上单调递增;在上单调递减 且,, , ①当时,,即在上恒成立 在上单调递增 ,即,此时恒成立 ②当时,,, ,使得 在上单调递增,在上单调递减 又, 在上恒成立,即恒成立 ③当时,, ,使得 在上单调递减,在上单调递增 时,,可知不恒成立 ④当时, 在上单调递减 可知不恒成立 综上所述: 21(1)在直线上 设,则 又 ,解得: 过点, 圆心必在直线上 设,圆的半径为 与相切 又,即 ,解得:或 当时,;当时, 的半径为:或 (2)存在定点,使得 说明如下: ,关于原点对称且 直线必为过原点的直线,且 ①当直线斜率存在时,设方程为: 则的圆心必在直线上 设,的半径为 与相切 又 ,整理可得: 即点轨迹方程为:,准线方程为:,焦点 ,即抛物线上点到的距离 当与重合,即点坐标为时, ②当直线斜率不存在时,则直线方程为: 在轴上,设 ,解得:,即 若,则 综上所述,存在定点,使得为定值. 22(1)由得:,又 整理可得的直角坐标方程为: 又, 的直角坐标方程为: (2)设上点的坐标为: 则上的点到直线的距离 当时,取最小值 则 23(1) 当且仅当时取等号 ,即: (2),当且仅当时取等号 又,,(当且仅当时等号同时成立) 又 查看更多