- 2021-05-24 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考椭圆双曲线题型总结
椭圆、双曲线题型总结 一、 椭圆、双曲线的定义和方程问题 (一) 定义: 1. 命题甲:动点到两点的距离之和命题乙: 的轨迹是以A、B为焦点的椭圆,则命题甲是命题乙的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 2. 已知、是两个定点,且,若动点满足则动点的轨迹是( ) A.椭圆 B.圆 C.直线 D.线段 3. 已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得,那么动点的轨迹是( ) A.椭圆 B.圆 C.直线 D.点 4. 已知当a=3或5时,P点的轨迹为( ) A.双曲线和一条直线 B.双曲线和两条直线 C.双曲线的一支和一条直线 D.双曲线的一支和一条射线 5. 椭圆上一点到焦点的距离为2,为的中点,是椭圆的中心,则的值是 。 6. 7. 选做: (1)、F1是椭圆的左焦点,P在椭圆上运动,定点A(1,1),求的最小值。 (2)F1是双曲线的左焦点,P在双曲线右支上运动,定点A(1,4),求的最小值。 (二) 标准方程求参数范围 1. 试讨论k的取值范围,使方程表示圆,椭圆,双曲线。 2. ( ) A.充分而不必要条件 B.必要不充分条件 C.充要条件 D.既不充分又不必要条件 3. 若方程表示焦点在y轴上的双曲线,则所在的象限是( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 4. 方程所表示的曲线是 . 5. 已知方程表示焦点在X轴上的椭圆,则实数k的范围是 (一) 待定系数法求椭圆和双曲线的标准方程 1. 根据下列条件求椭圆和双曲线的标准方程: (1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26; (2)长轴是短轴的2倍,且过点(2,-6); (3),经过点(-5,2),焦点在轴上的双曲线标准方程为. (4)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求椭圆方程. (5)过点,,且焦点在坐标轴上的双曲线标准方程。 2. 简单几何性质 1. 求下列椭圆的标准方程(1); (2)过(3,0)点,离心率为。 (3)椭圆的对称轴为坐标轴上,短轴的一个端点与两个焦点组成一个正三角形,焦点到椭圆的最近距离是。 (4)椭圆短轴的一个端点到一个焦点的距离为5,焦点到椭圆中心的距离为3,则椭圆的标准方程为 (5)已知P点在以坐标轴为对称轴的椭圆上,点P到两焦点的距离分别为和,过P作长轴的垂线恰好过椭圆的一个焦点。 2. 已知双曲线的离心率为,焦点是,,则双曲线方程。 3. 双曲线-=1的渐近线方程是( ) A. y=±x B.y=±x C.y=±x D.y=±x 4. 已知是双曲线的左、右焦点,过且垂直于轴的直线与双曲线的左支交于A、B两点,若是正三角形,那么双曲线的离心率为 ( ) A. B. C. 2 D. 3 5. 已知双曲线的离心率一个焦点到一条渐近线的距离为6,求其焦距。 6.过椭圆的左焦点作轴的垂线交椭圆于点P,F2为右焦点,若,则椭圆的离心率为_____________________ (四)椭圆系,双曲线系————共焦点,共渐近线,相同离心率 1. 椭圆与的关系为( ) A.相同的焦点 B。有相同的准线 C。有相等的长、短轴 D。有相等的焦距 2.过点(2,-2)且与双曲线-y2=1有公共渐近线的双曲线方程是( ) A.-=1 B.-=1 C.-=1 D.-=1 3.与双曲线有相同焦点,且经过点的双曲线标准方程为_______________________ 4.求与椭圆有相同焦点,且经过点的椭圆标准方程。 5.双曲线渐近线为,且经过点的双曲线标准方程。 (五)焦点三角形4a 1. 已知、为椭圆的两个焦点,过的直线交椭圆于、两点。若,则 。 2. 已知、为椭圆的两个焦点,过且斜率不为0的直线交椭圆于、两点,则的周长是 。 3. 已知的顶点、在椭圆上,顶点是椭圆的一个焦点,且椭圆的另外一个焦点在边上,则的周长为 。 (六)焦点三角形的面积: 1. 已知点是椭圆上的一点,、为焦点,,求点到轴的距离。 2. 双曲线的两个焦点为、,在双曲线上,且满足,则的面积为 。 3. 设是椭圆上的一点,、为焦点,,求的面积。 4. 已知点是椭圆上的一点,、为焦点,若,则的面积为 。 1. 设是双曲线上的一点,、为焦点,,求的面积。 2. 已知AB为经过椭圆的中心的弦,F(c,0)为椭圆的右焦点,则△AFB的面积的最大值为 。 (七)焦点三角形 1. 设椭圆的两焦点分别为和,为椭圆上一点,求的最大值,并求此时点的坐标。 2. 椭圆的焦点为、,点在椭圆上,若,则 ; 。 3. 椭圆的焦点为、,为其上一动点,当为钝角时,点的横坐标的取值范围为 。 4. P为椭圆上一点,、分别是椭圆的左、右焦点。(1)若的中点是,求证:;(2)若,求的值。 (八)与椭圆,双曲线相关的轨迹方程 定义法: 1. 点M(x,y)满足,求点M的轨迹方程。 2. 点M(x,y)满足,求点M的轨迹方程。 3. 已知动圆过定点,并且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 4. 已知动圆过定点,并且在定圆的内部与其相内切,求动圆圆心的轨迹方程. 1. 已知圆,圆,动圆与外切,与内切,求动圆圆心的轨迹方程. 2. 已知动圆C与圆,圆都外切,求动圆圆心C的轨迹方程。 3. 已知,是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为 4. 已知,是圆(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为 5. 已知A(0,-1),B(0,1),△ABC的周长为6,则△ABC 的顶点C的轨迹方程是 。 直接法 6. 若的两个顶点坐标分别是和,另两边、的斜率的乘积是,顶点的轨迹方程为 。 7. 若的两个顶点坐标分别是和,另两边、的斜率的乘积是,顶点的轨迹方程为 。 相关点法 8. 已知圆,从这个圆上任意一点向轴引垂线段,垂足为,点在上,并且,求点M的轨迹。 9. 已知圆,从这个圆上任意一点P向X轴引垂线段PP’,则线段PP’的中点M的轨迹方程是 。 10. 已知椭圆,A、B分别是长轴的左右两个端点,P为椭圆上一个动点,求AP中点的轨迹方程。 1. 一条线段的长为,两端点分别在轴、轴上滑动 ,点在线段上,且,求点的轨迹方程. 一、 直线和椭圆的位置关系 (一)判断位置关系 1. 当为何值时,直线和椭圆 (1)相交;(2)相切;(3)相离。 2. 若直线与椭圆有两个公共点,则实数的取值范围为 。 (二)弦长问题 1. 已知斜率为1的直线l过椭圆的右焦点,交椭圆于A、B两点,求AB的弦长 2. 设椭圆的左右两个焦点分别为、,过右焦点且与轴垂直的直线与椭圆C相交,其中一个交点为。 (1) 求椭圆的方程; (2) 设椭圆C的一个顶点为B(0,-b),直线交椭圆C于另一点N,求的面积。 (三)点差法 1. 已知一直线与椭圆 相交于、两点,弦的中点坐标为,求直线AB的方程. 2. 椭圆C以坐标轴为对称轴,并与直线l:x+2y=7相交于P、Q两点,点R的坐标为(2,5),若为等腰三角形,,求椭圆C的方程。 (四) 定值、定点问题 1、已知动直线与椭圆相交于、两点,已知点 , 求证: 为定值.[ (五) 取值范围问题 已知椭圆的一个顶点为,焦点在轴上.若右焦点到直线的距 离为3.(1)求椭圆的方程. (2)设直线与椭圆相交于不同的两点.当时,求的 取值范围 (六)对称问题 1. 已知椭圆,试确定m的取值范围,使得椭圆上有两个不同的点关于直线对称。查看更多