- 2021-05-21 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
初中数学中考名师面对面专题指导初中数学中考名师面对面专题指导图形折叠类问题
2018年初中数学中考名师面对面专题指导 第五讲图形折叠类问题 (一) 考点解析: 折叠操作就是将图形的一部分沿着一条直线翻折180°,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果.折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用. 折叠(或翻折)在三大图形变换中是比较重要的,考查得较多,无论是选择题、填空题,还是解答题都有以折叠为背景的试题.常常把矩形、正方形的纸片放置于直角坐标系中,与函数、直角三角形、相似形等知识结合,贯穿其他几何、代数知识来设题. 根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等. 在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题. (二)考点训练 考点1:折叠后图形判断 【典型例题】:(2017浙江湖州)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是( ) A.B.C. D. 【考点】IM:七巧板. 【分析】解答此题要熟悉七巧板的结构:五个等腰直角三角形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答. 【解答】解:图C中根据图7、图4和图形不符合,故不是由原图这副七巧板拼成的. 故选C 【变式训练】: (2017湖北江汉)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影. (1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形; (2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形. 【考点】R9:利用旋转设计图案;P8:利用轴对称设计图案. 【分析】(1)根据中心对称图形,画出所有可能的图形即可. (2)根据是轴对称图形,不是中心对称图形,画出图形即可. 【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示; (2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示; 方法归纳总结: 对折叠图形的判断,可以通过空间想象,找出相等的边与角,转化为角度的判断. 考点2:折叠后度数判断 【典型例题】:(2017内蒙古赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点A恰好落在对角线的交点O处,若折痕EF=2,则∠A=( ) A.120° B.100° C.60° D.30° 【考点】PB:翻折变换(折叠问题);L8:菱形的性质. 【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO. 【解答】解: 连接AC, ∵四边形ABCD是菱形, ∴AC⊥BD, ∵A沿EF折叠与O重合, ∴EF⊥AC,EF平分AO, ∵AC⊥BD, ∴EF∥BD, ∴E、F分别为AB、AD的中点, ∴EF为△ABD的中位线, ∴EF=BD, ∴BD=2EF=4, ∴BO=2, ∴AO==2, ∴AO=AB, ∴∠ABO=30°, ∴∠BAO=60°, ∴∠BAD=120°. 故选A. 【变式训练】: (2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为( ) A.30° B.45° C.60° D.75° 【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案. 【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°, 则NG=AM,故AN=NG, 则∠2=∠4, ∵EF∥AB, ∴∠4=∠3, ∴∠1=∠2=∠3=×90°=30°, ∴∠DAG=60°. 故选:C. 【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键. 方法归纳总结: 在折叠问题中,利用对称性可得到相等的角和边. 考点3:折叠后线段长度判断 【典型例题】:(2017贵州安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,若AO=5cm,则AB的长为( ) A.6cm B.7cm C.8cm D.9cm 【考点】PB:翻折变换(折叠问题);LB:矩形的性质. 【分析】根据折叠前后角相等可证AO=CO,在直角三角形ADO中,运用勾股定理求得DO,再根据线段的和差关系求解即可. 【解答】解:根据折叠前后角相等可知∠BAC=∠EAC, ∵四边形ABCD是矩形, ∴AB∥CD, ∴∠BAC=∠ACD, ∴∠EAC=∠EAC, ∴AO=CO=5cm, 在直角三角形ADO中,DO==3cm, AB=CD=DO+CO=3+5=8cm. 故选:C. 【变式训练】: (2017广东)如图,矩形纸片ABCD中,AB=5,BC=3,先按图(2)操作:将矩形纸片ABCD沿过点A的直线折叠,使点D落在边AB上的点E处,折痕为AF;再按图(3)操作,沿过点F的直线折叠,使点C落在EF上的点H处,折痕为FG,则A、H两点间的距离为 . 【考点】PB:翻折变换(折叠问题);LB:矩形的性质. 【分析】如图3中,连接AH.由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1,根据AH=,计算即可. 【解答】解:如图3中,连接AH. 由题意可知在Rt△AEH中,AE=AD=3,EH=EF﹣HF=3﹣2=1, ∴AH===, 故答案为. 方法归纳总结: 在折叠问题中,利用对称性可得到相等的线段,通过三角形相似、勾股定理列出方程求解. 折叠问题转化为轴对称问题,利用勾股定理和相似求出未知线段,最后把所求的线段转化到直角三角形中去处理. 考点4:折叠后周长面积计算 【典型例题】:(2017.江苏宿迁)如图,在矩形纸片ABCD中,已知AB=1,BC= ,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形AB′C′E,点B、C的对应点分别为点B′、C′. (1)当B′C′恰好经过点D时(如图1),求线段CE的长; (2)若B′C′分别交边AD,CD于点F,G,且∠DAE=22.5°(如图2),求△DFG的面积; (3)在点E从点C移动到点D的过程中,求点C′运动的路径长. 【考点】LO:四边形综合题. 【分析】(1)如图1中,设CE=EC′=x,则DE=1﹣x,由△ADB′′∽△DEC,可得=,列出方程即可解决问题; (2)如图2中,首先证明△ADB′,△DFG都是等腰直角三角形,求出DF即可解决问题; (3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题. 【解答】解:(1)如图1中,设CE=EC′=x,则DE=1﹣x, ∵∠ADB′+∠EDC′=90°,∠B′AD+∠ADB′=90°, ∴∠B′AD=∠EDC′, ∵∠B′=∠C′=90°,AB′=AB=1,AD=, ∴DB′==, ∴△ADB′′∽△DEC, ∴=, ∴=, ∴x=﹣2. ∴CE=﹣2. (2)如图2中, ∵∠BAD=∠B′=∠D=90°,∠DAE=22.5°, ∴∠EAB=∠EAB′=67.5°, ∴∠B′AF=∠B′FA=45°, ∴∠DFG=∠AFB′=∠DGF=45°, ∴DF=FG, 在Rt△AB′F中,AB′=FB′=1, ∴AF=AB′=, ∴DF=DG=﹣, ∴S△DFG=(﹣)2=﹣. (3)如图3中,点C的运动路径的长为的长, 在Rt△ADC中,∵tan∠DAC==, ∴∠DAC=30°,AC=2CD=2, ∵∠C′AD=∠DAC=30°, ∴∠CAC′=60°, ∴的长==π. 【变式训练】: (2016·四川攀枝花)如图,正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD落在BD上,点A恰好与BD上的点F重合,展开后折痕DE分别交AB、AC于点E、G,连结GF,给出下列结论:①∠ADG=22.5°;②tan∠AED=2;③S△AGD=S△OGD;④四边形AEFG是菱形;⑤BE=2OG;⑥若S△OGF=1,则正方形ABCD的面积是6+4,其中正确的结论个数为( ) A.2 B.3 C.4 D.5 【考点】四边形综合题. 【分析】①由四边形ABCD是正方形,可得∠GAD=∠ADO=45°,又由折叠的性质,可求得∠ADG的度数; ②由AE=EF<BE,可得AD>2AE; ③由AG=GF>OG,可得△AGD的面积>△OGD的面积; ④由折叠的性质与平行线的性质,易得△EFG是等腰三角形,即可证得AE=GF; ⑤易证得四边形AEFG是菱形,由等腰直角三角形的性质,即可得BE=2OG; ⑥根据四边形AEFG是菱形可知AB∥GF,AB=GF,再由∠BAO=45°,∠GOF=90°可得出△OGF时等腰直角三角形,由S△OGF=1求出GF的长,进而可得出BE及AE的长,利用正方形的面积公式可得出结论. 【解答】解:∵四边形ABCD是正方形, ∴∠GAD=∠ADO=45°, 由折叠的性质可得:∠ADG=∠ADO=22.5°, 故①正确. ∵由折叠的性质可得:AE=EF,∠EFD=∠EAD=90°, ∴AE=EF<BE, ∴AE<AB, ∴>2, 故②错误. ∵∠AOB=90°, ∴AG=FG>OG,△AGD与△OGD同高, ∴S△AGD>S△OGD, 故③错误. ∵∠EFD=∠AOF=90°, ∴EF∥AC, ∴∠FEG=∠AGE, ∵∠AGE=∠FGE, ∴∠FEG=∠FGE, ∴EF=GF, ∵AE=EF, ∴AE=GF, 故④正确. ∵AE=EF=GF,AG=GF, ∴AE=EF=GF=AG, ∴四边形AEFG是菱形, ∴∠OGF=∠OAB=45°, ∴EF=GF=OG, ∴BE=EF=×OG=2OG. 故⑤正确. ∵四边形AEFG是菱形, ∴AB∥GF,AB=GF. ∵∠BAO=45°,∠GOF=90°, ∴△OGF时等腰直角三角形. ∵S△OGF=1, ∴OG2=1,解得OG=, ∴BE=2OG=2,GF===2, ∴AE=GF=2, ∴AB=BE+AE=2+2, ∴S正方形ABCD=AB2=(2+2)2=12+8,故⑥错误. ∴其中正确结论的序号是:①④⑤. 故选B. 【点评】此题考查的是四边形综合题,涉及到正方形的性质、折叠的性质、等腰直角三角形的性质以及菱形的判定与性质等知识.此题综合性较强,难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用. 方法归纳总结: 在折叠问题中,利用对称性可得到相等的角、全等的图形和相等的面积. 考点5:折叠后结论探讨 【典型例题】:已知,在Rt△ABC中,∠ACB=90°,AC=4,BC=2,D是AC边上的一个动点,将△ABD沿BD所在直线折叠,使点A落在点P处. (1)如图1,若点D是AC中点,连接PC. ①写出BP,BD的长; ②求证:四边形BCPD是平行四边形. (2)如图2,若BD=AD,过点P作PH⊥BC交BC的延长线于点H,求PH的长. 【考点】LO:四边形综合题. 【分析】(1)①分别在Rt△ABC,Rt△BDC中,求出AB、BD即可解决问题; ②想办法证明DP∥BC,DP=BC即可; (2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M.设BD=AD=x,则CD=4﹣x,在Rt△BDC中,可得x2=(4﹣x)2+22,推出x=,推出DN==,由△BDN∽△BAM,可得=,由此求出AM,由△ADM∽△APE,可得 =,由此求出AE=,可得EC=AC﹣AE=4﹣=由此即可解决问题. 【解答】解:(1)①在Rt△ABC中,∵BC=2,AC=4, ∴AB==2, ∵AD=CD=2, ∴BD==2, 由翻折可知,BP=BA=2. ②如图1中, ∵△BCD是等腰直角三角形, ∴∠BDC=45°, ∴∠ADB=∠BDP=135°, ∴∠PDC=135°﹣45°=90°, ∴∠BCD=∠PDC=90°, ∴DP∥BC,∵PD=AD=BC=2, ∴四边形BCPD是平行四边形. (2)如图2中,作DN⊥AB于N,PE⊥AC于E,延长BD交PA于M. 设BD=AD=x,则CD=4﹣x, 在Rt△BDC中,∵BD2=CD2+BC2, ∴x2=(4﹣x)2+22, ∴x=, ∵DB=DA,DN⊥AB, ∴BN=AN=, 在Rt△BDN中,DN==, 由△BDN∽△BAM,可得=, ∴=, ∴AM=2, ∴AP=2AM=4, 由△ADM∽△APE,可得=, ∴=, ∴AE=, ∴EC=AC﹣AE=4﹣=, 易证四边形PECH是矩形, ∴PH=EC=. 【变式训练】: (2016·重庆市A卷·4分)正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是 . 【分析】如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.易知△AEB≌△AED≌△ADE′,先求出正方形AMEN的边长,再求出AB,根据S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB即可解决问题. 【解答】解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N. ∵四边形ABCD是正方形, ∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC, ∠DAC=∠CAB=∠DAE′=45°, 根据对称性,△ADE≌△ADE′≌△ABE, ∴DE=DE′,AE=AE′, ∴AD垂直平分EE′, ∴EN=NE′, ∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=, ∴AM=EM=EN=AN=1, ∵ED平分∠ADO,EN⊥DA,EO⊥DB, ∴EN=EO=1,AO=+1, ∴AB=AO=2+, ∴S△AEB=S△AED=S△ADE′=×1(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+, ∵DF=EF, ∴S△EFB=, ∴S△DEE′=2S△ADE﹣S△AEE′=+1,S△DFE′=S△DEE′=, ∴S四边形AEFE′=2S△ADE﹣S△DFE′=, ∴S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB=. 故答案为. 方法归纳总结: 解决折叠问题时,一是要对图形折叠有准确定位,抓住图形之间最本质的位置关系,从点、线、面三个方面入手,发现其中变化的和不变的量,发现图形中的数量关系;二是要把握折叠的变化规律,充分挖掘图形的几何性质,将其中的基本的数量关系用方程的形式表达出来. (三)考点检测 1. (2017宁夏)如图,将平行四边形ABCD沿对角线BD折叠,使点A落在点A'处.若∠1=∠2=50°,则∠A'为 105° . 【分析】由平行四边形的性质和折叠的性质,得出∠ADB=∠BDG=∠DBG,由三角形的外角性质求出∠BDG=∠DBG=∠1=25°,再由三角形内角和定理求出∠A,即可得到结果. 【解答】解:∵AD∥BC, ∴∠ADB=∠DBG, 由折叠可得∠ADB=∠BDG, ∴∠DBG=∠BDG, 又∵∠1=∠BDG+∠DBG=50°, ∴∠ADB=∠BDG=25°, 又∵∠2=50°, ∴△ABD中,∠A=105°, ∴∠A'=∠A=105°, 故答案为:105°. 【点评】本题主要考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理的综合应用,熟练掌握平行四边形的性质,求出∠ADB的度数是解决问题的关键. 2. 如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是 10cm,2cm,4cm . 【考点】PC:图形的剪拼. 【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长. 【解答】解:如图:, 过点A作AD⊥BC于点D, ∵△ABC边AB=AC=10cm,BC=12cm, ∴BD=DC=6cm, ∴AD=8cm, 如图①所示: 可得四边形ACBD是矩形,则其对角线长为:10cm, 如图②所示:AD=8cm, 连接BC,过点C作CE⊥BD于点E, 则EC=8cm,BE=2BD=12cm, 则BC=4cm, 如图③所示:BD=6cm, 由题意可得:AE=6cm,EC=2BE=16cm, 故AC==2cm, 故答案为:10cm,2cm,4cm. 3. (2017内江) 如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( ) A.(,) B.(2,) C.(,) D.(,3﹣) 【考点】PB:翻折变换(折叠问题);D5:坐标与图形性质;LB:矩形的性质. 【分析】根据翻折变换的性质结合锐角三角函数关系得出对应线段长,进而得出D点坐标. 【解答】解:∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3), ∴AC=OB=3,∠CAB=30°, ∴BC=AC•tan30°=3×=3, ∵将△ABC沿AB所在直线对折后,点C落在点D处, ∴∠BAD=30°,AD=3, 过点D作DM⊥x轴于点M, ∵∠CAB=∠BAD=30°, ∴∠DAM=30°, ∴DM=AD=, ∴AM=3×cos30°=, ∴MO=﹣3=, ∴点D的坐标为(,). 故选:A. 4. (2016·山东省东营市·4分)如图,折叠矩形ABCD的一边AD,使点D落在BC边的点F处,已知折痕AE=5cm, 且tan∠EFC=,那么矩形ABCD的周长_____________cm. 【知识点】折叠(轴对称)——轴对称的性质、特殊平行四边形——矩形的性质、锐角三角函数——三角函数的求法、勾股定理 【答案】36. 【解析】∵△AFE和△ADE关于AE对称,∴∠AFE=∠D=90°,AF=AD,EF=DE. ∵tan∠EFC==,∴可设EC=3x,CF=4x,那么EF=5x, ∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x. ∵∠EFC+∠AFB=90°, ∠BAF+∠AFB=90°, ∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x. 在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1. ∴AB=8x=8,AD=10x=10. ∴矩形ABCD的周长=8×2+10×2=36. 【点拨】折叠矩形,可以得到“轴对称” 的图形,对于线段相等、对应角相等、对应的三角形全等;由锐角的正切值可以转化为相应直角三角形的直角边之比;在直角三角形中,利用勾股定理可以列出方程解决问题.查看更多