- 2021-05-20 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2011中考数学一轮复习几何篇25圆与圆二
25.圆与圆(二) 知识考点: 1、掌握两圆的内外公切线长的性质和求切线长的方法(转化为解直角三角形)。 2、掌握有关两圆的内、外公切线的基本图形,以及这类问题添加辅助线的方法,会结合圆的切线的性质解决有关两圆公切线的问题。 精典例题: 【例1】如图,⊙O1与⊙O2外切于P,AB是两圆的外公切线,切点为A、B,我们称△PAB为切点三角形,切点三角形具有许多性质,现总结如下: (1)△PAB是直角三角形,并且∠APB=900; (2)△PAB的外接圆与连心线O1O2相切; (3)以O1O2为直径的圆与Rt△PAB的斜边AB相切; (4)斜边AB是两圆直径的比例中项; (5)若⊙O1、⊙O2的半径为、,则PA∶PB∶AB=∶∶; (6)内公切线PC平分斜边AB; (7)△CO1O2为直角三角形。 这些结论虽然在证题时仍需证明,但有了这些基本结论作基础,可帮助你迅速找到解题思路,可以提高解题速度,下面用一个具体的例子来说明。 如图2,⊙A和⊙B外切于P,CD为两圆的外公切线,C、D分别为切点,PT为内公切线,PT与CD相交于点T,延长CP、DP分别与两圆相交于点E、F,又⊙A的半径为9,⊙B的半径为4。 (1)求PT的长; (2)求证:; (3)试在图中找出是线段PA和PB比例中项的线段,并加以证明。 分析:图中的基本图形是切点三角形,易证T为CD的中点,∠CPD=900,PT即为外公切线长的一半,CF、DE分别为两圆直径,且互相平行,问题就解决了。 略解;(1)作BG⊥AC于G,则CD=BG= ∴PT=CT=TD=CD=6 证明(2)PT=CD,∴∠CPD=900 ∴CF、DE分别是⊙A和⊙B的直径 又∵CD切两圆于C、D,∴FC⊥CD,ED⊥CD ∴CF∥DE,∴,∴ (3)图中是PA和PB比例中项的线段有PT、CT、DT(证明略) 【例2】如图,⊙O和⊙内切于点B,⊙经过O,⊙O的弦AE切⊙于点C,AB交⊙于D。 (1)求证:; (2)设AB=10cm,DC=cm,求AC和BC的长。 分析:两圆相切,常见辅助线是作两圆公切线,作连心线,本题添了这两种辅助线,问题便迎刃而解了。 (1)证明:过B作两圆的公切线BT,证△BCD∽△BEC即可; (2)解:连结并延长,连结OD ∵⊙O与⊙内切,∴O、、B三点共线 ∴BO为⊙的直径 ∴OD⊥BD,∴AD=BD=AB=5 cm ∵AC切⊙于C,∴∠4=∠5,又∠A=∠A ∴△ACD∽△ABC,∴ ∴,cm 探索与创新: 【问题一】如图,AB为半⊙O的直径,⊙O1与半圆内切于,与AB相切于,⊙O2与半圆内切于,与AB相切于,请比较∠AC1D1与∠AC2D2的大小。 分析:显然O、O1、共线,O、O2、共线,又∵O1D1⊥AB,O2D2⊥AB ∴∠A1C1D1=∠AC1O-∠OC1D1=(∠OO1B-∠OOD1)=∠O1D1O=×900=450;∠AC2D2=∠AC2O+∠OC2D2=(∠C2OB+∠OO2D2)=×900=450,故∠AC1D1=∠AC2D2。 【问题二】如图,已知圆心A(0,3),⊙A与轴相切,⊙B的圆心在轴的正半轴上,且⊙A与⊙B外切于点P,两圆的公切线MP交轴于点M,交轴于点N。 (1)若sin∠OAB=,求直线MP的解析式及经过M、N、B三点的抛物线的解析式; (2)若⊙A的位置大小不变,⊙B的圆心在轴的正半轴上移动,并使⊙A与⊙B始终外切,过M作⊙B的切线MC,切点为C,在此变化过程中探究: ①四边形OMCB是什么四边形?对你的结论加以证明; ②经过M、N、B三点的抛物线内是否存在以BN为腰的等腰三角形?若存在,表示出来;若不存在,请说明理由。 解:(1)提示:先求出M(0,-2)、N(,0),再用待定系数法易得直线MP的解析式:,过M、N、B三点的抛物线的解析式为; (2)①四边形OMCB是矩形,证明如下: 在⊙A不动,⊙A运动变化过程中,恒有∠BAO=∠MAP,OA=AP,∠AOB=∠APM=900,∴△AOB≌△APM,∴PB=PM,AB=AM,∴PB=OM,而PB=BC,OM=BC。由切线长定理知MC=MP,∴MC=OB,∴四边形MOBC是平行四边形,又∵∠MOB=900,∴四边形MOBC是矩形。 ②存在,由上证明可知,Rt△MON≌Rt△BPN,∴BN=MN。因此存在过M、N、B三点的抛物线内有以BN为腰的等腰三角形MNB存在。由抛物线的轴对称性可知,在抛物线上必有一点与M关于其对称轴对称,∴BN=,这样得到满足条件的三角形有两个,△MNB和△。 跟踪训练: 一、选择题: 1、如果两圆的半径分别为、,外公切线长为,那么这两个圆( ) A、相交 B、外切 C、外离 D、外切或外离 2、两圆外切,它们的两条外公切线互相垂直,大圆的半径是,小圆的半径是,则等于( ) A、 B、 C、2 D、 3、已知⊙O1和⊙O2外切于点P,过点P的直线AB分别交⊙O1、⊙O2于A、B。已知⊙O1和⊙O2的面积比为3∶1,则AP∶PB=( ) A、3∶1 B、6∶1 C、9∶1 D、∶1 4、如图,⊙O1和⊙O2外切于点A,外公切线BC与⊙O1、⊙O2分别切于B、C,与连心线O1O2交于P,若∠BPO1=300,则⊙O1和⊙O2的半径之比为( ) A、1∶2 B、3∶1 C、2∶3 D、3∶4 二、填空题: 1、两圆的外公切线长为,内公切线长为,若圆心距是20,则两圆的半径分别是 。 2、如图,⊙O1和⊙O2外切于点C,AB是外公切线,A、B是切点,若AB=5,BC=3,则⊙O1的半径为 。 3、如图,⊙O1和⊙O2外切于点C,AB是外公切线,A、B是切点,两圆半径分别为9cm、4 cm,则AC∶BC= 。 4、如图,⊙O1与⊙O2相交于A、B两点,现给出四个命题: ①若AC是⊙O2的切线,且交⊙O1于C,AD是⊙O1的切线,且交⊙O2于D,则:; ②连结AB,O1O2,若O1 A=15 cm,O2 A=20 cm,AB=24 cm,则O1O2=25 cm; ③若CA是⊙O1的直径,DA是⊙O2的一条非直径的弦,且点D、B不重合,则C、B、D三点不在同一条直线上; ④若过点A作⊙O1的切线交⊙O2于点D,直线DB交⊙O1于点C,直线CA交⊙O2于点E,连结则。 则正确命题的序号是 (填序号)。 5、两外切,其半径分别为4和3,这两个圆的连心线与一条外公切线所夹锐角的正切值为 。 6、如上页图,⊙O1与⊙O2外切于A,⊙O1的弦BC延长切⊙O2于D,BA交⊙O2于E,若∠BDE=1100,则∠BAC= 。 三、计算或证明题: 1、如图,已知矩形ABCD,⊙O1与⊙O2外切,⊙O1与AD、AB、AC相切,⊙O2与BC、CD相切。 (1)若AB=18,BC=25,求⊙O2的半径; (2)若连心线O1O2与BC的夹角为300,O1O2=12,求矩形ABCD的面积。 2、如图,已知⊙O1与⊙O2外切于P,外公切线AB分别切⊙O1于A,切⊙O2于B,且AB=,∠A O1O2=600,求两圆的半径及O1O2的长。 3、如图,已知⊙O与⊙P相交于A、B两点,点P在⊙O上,⊙O的弦AC切⊙P于点A,CP及其延长线交⊙P于D、E,过点E作EF⊥CE交CB的延长线于F。 (1)求证:BC是⊙P的切线; (2)若CD=2,CB=,求EF的长; (3)若设=PE∶CE,是否存在实数,使△PBD恰好是等边三角形?若存在,求出的值;若不存在,请说明理由。 跟踪训练参考答案 一、选择题;DBDB 二、填空题: 1、6,4;2、;3、3∶2;4、①②③④;5、;6、400 三、计算或证明题: 1、略解:(1)易知⊙O1的半径为9,设小圆半径为,连结O1O2、O1E、O2F,作O2M⊥O1E于M,则,解得;(2)矩形ABCD的面积为; 2、,。 3、(1)证BP⊥CB;(2);(3)存在。查看更多