- 2021-05-20 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2020届数学(理)一轮复习人教版:第九章第一节 随机抽样作业
限时规范训练(限时练·夯基练·提能练) A级 基础夯实练 1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( ) A.p1=p2<p3 B.p2=p3<p1 C.p1=p3<p2 D.p1=p2=p3 解析:选D.由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3. 2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( ) A.93 B.123 C.137 D.167 解析:选C.初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C. 3.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是( ) A.5,10,15,20,25,30 B.2,4,8,16,32,48 C.5,15,25,35,45,55 D.1,12,34,47,51,60 解析:选C.从60枚新型导弹中随机抽取6枚,采用系统抽样间隔应为=10,只有C选项中导弹的编号间隔为10. 4.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( ) 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 A.23 B.09 C.02 D.16 解析:选D.从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16. 5.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c成等差数列,则二车间生产的产品数为( ) A.800 B.1 000 C.1 200 D.1 500 解析:选C.因为a、b、c成等差数列,所以2b=a+c,所以从二车间抽取的产品数占抽取产品总数的,根据分层抽样的性质可知,二车间生产的产品数占产品总数的,所以二车间生产的产品数为3 600×=1 200.故选C. 6.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( ) 第8行 第9行 A.07 B.25 C.42 D.52 解析:选D.依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D. 7.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( ) A.7,11,18 B.6,12,18 C.6,13,17 D.7,14,21 解析:选D.因为该单位共有27+54+81=162(人),样本容量为42,所以应当按=的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D. 8.(2018·贵阳市检测)某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________. 解析:依题意得,=,由此解得n=72. 答案:72 9.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________. 解析:在系统抽样中,确定分段间隔k,对编号进行分段,k=(N为总体的容量,n为样本的容量),所以k===40. 答案:40 10.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆): 轿车A 轿车B 轿车C 舒适型 100 150 z 标准型 300 450 600 按类型用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆,则z的值为________. 解析:设该厂这个月共生产轿车n辆, 由题意得=,所以n=2 000, 则z=2 000-100-300-150-450-600=400. 答案:400 B级 能力提升练 11.(2018·江西南昌摸底)高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. 解析:分组间隔为=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45. 答案:45 12.(2018·四川成都龙泉联考)某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生. 解析:从高一年级抽取的学生人数为80×=32. 答案:32 13.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________. 解析:抽样间隔为=20.设在1,2,…,20中抽取号码x0(x0∈[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+x0≤720,k∈N*.∴24≤k+≤36. ∵∈,∴k=24,25,26,…,35, ∴k值共有35-24+1=12(个),即所求人数为12. 答案:12 14.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________. 解析:系统抽样的间隔为=3. 设抽到最小编号为x, 则x+(3+x)+(6+x)+(9+x)+(12+x)+(15+x)=57.解得x=2. 答案:2 15.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表: 高一年级 高二年级 高三年级 跑步 a b c 登山 x y z 其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的,为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人. 解析:根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36(人). 答案:36 16.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示. 根据统计图所提供的信息,解答下列问题: (1)本次共调查了________名市民; (2)补全条形统计图; (3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数. 解:(1)本次共调查的市民人数为800÷40%=2 000. (2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400. 将条形统计图补充完整,如图所示. (3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%, 该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).查看更多