- 2021-05-13 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
江苏省南京市秦淮中学2021届高三上学期期初调研考试数学试题(学生版)
南京市秦淮中学 2021 届高三期初调研考试试卷 数学 注意事项及说明:本卷考试时间为 120 分钟,全卷满分为 150 分. 公式:球体积 V = 4 3 πR3,随机变量 ξ 的方差 V (ξ) = n i = 1 x2 i pi - μ2 一、单项选择题:(本题共 8 小题.每小题 5 分,共 40 分在每小题给出的四个选项中,只有一项符 合题目要求.请将答案填写在答题卡相应的位置上.) 1.设 A = x x > 1 , B = x x2 - x - 2 < 0 ,则 CRA ∩ B =( ) A. x x > - 1 B. x - 1 < x ≤ 1 C. x - 1 < x < 1 D. x 1 < x < 2 2.若 z( 1 + i) = 1 - i,则 z =( ) A. 1 - i B. 1 + i C. -i D. i 3.为了加强“精准扶贫”,实现伟大复兴的“中国梦”,某大学派遣甲、乙、丙、丁、戊五位同学参 加 A、 B、 C 三个贫困县的调研工作,每个县至少去 1 人,且甲、乙两人约定去同一个贫困县, 则不同的派遣方案共有( ) A. 24 B. 36 C. 48 D. 64 4.如图,在正四棱柱 ABCD — A1B1C1D1 中, AB = 2BB1, P 为 B1C1 的中点.则异面直线 AC 与 BP 所成的角为( ) A. 90° B. 60° C. 45° D. 30° 5.甲、乙两人投篮,投中的概率分别为 0.6, 0.7,若两人各投 2 次,则两人投中次数不等的概率 是( ) A. 0.6076 B. 0.7516 C. 0.3924 D. 0.2484 6.△ ABC 是边长为 1 的等边三角形,点 D, E 分别是边 AB, BC 的中点,连接 DE 并延长到点 F, 使得 DE = 2EF,则 AF ·BC 的值为( ) A. -5 8 B. 1 8 C. 1 4 D. 11 8 7. Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地 区新冠肺炎累计确诊病例数 I t (t 的单位:天)的 Logisic 模型: I t = K 1 + e-0.23 t - 53 ,其中 K 为最大确诊病例数.当 I t∗ = 0.95K 时,标志着已初步遏制疫情,则 t ∗ 约为(ln19 ≈ 3) ( ) A. 60 B. 63 C. 66 D. 69 8.设函数 f(x) = x(ex + ae-x) 的导函数为 f(x),若 f(x) 是奇函数,则曲线 y = f(x) 在点 (1, f(1)) 处 切线的斜率为( ) A. -2e B. - 1 e C. 2 D. 2e 二、多项选择题:(本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的四个选项中,有多项符 合题目要求.全部选对得 5 分,部分选对得 3 分,有选错得 0 分.请将答案填写在答题卡相应 的位置上.) 9.为了对变量 x 与 y 的线性相关性进行检验,由样本点 x1, y1 、 x2, y2 、 ⋯、 x10, y10 求得两个 变量的样本相关系数为 r,那么下面说法中错误的有( ) A. 若所有样本点都在直线 y = - 2x + 1 上,则 r = 1 B. 若所有样本点都在直线 y = - 2x + 1 上,则 r = - 2 C. 若 r 越大,则变量 x 与 y 的线性相关性越强 D. 若 r 越小,则变量 x 与 y 的线性相关性越强 10.已知双曲线 C: x2 a2 - y2 b2 = 1(a > 0, b > 0) 的离心率为 2 3 3 ,右顶点为 A,以 A 为圆心, b 为 半径作圆 A,圆 A 与双曲线 C 的一条渐近线交于 M, N 两点,则( ) A. 渐近线方程为 y = ± 3 x B. 渐近线方程为 y = ± 3 3 x C. ∠ MAN = 60° D. ∠ MAN = 120° 11.已知函数 f x = Acos ωx + φ (A > 0, ω > 0, 0 < φ < π) 的图象的一个最高点为 - π 12 , 3 ,与之 相邻的一个对称中心为 π 6 , 0 ,将 f x 的图象向右平移 π 6 个单位长度得到函数 g x 的图象, 则( ) A. g x 为偶函数 B. g x 的一个单调递增区间为 -5π 12 , π 12 C. g x 为奇函数 D. g x 在 0, π 2 上只有一个零点 12.若 a > 0, b > 0,则下面有几个结论正确的有( ) A. 若 a ≠ 1, b ≠ 1,则 logab + logba ≥ 2 B. a2 + b2 a + b ≥ 2 2 C. 若 1 a + 4 b = 2,则 a + b ≥ 9 2 D. 若 ab + b2 = 2,则 a + 3b ≥ 4 三、填空题: ( 本题共 4 小题,每小题 5 分,共 20 分.请将答案填写在答题卡相应的位置上. ) 13.《尘劫记》是在元代的《算学启蒙》和明代的《算法统宗》的基础上编撰的一部古典数学著 作,其中记载了一个这样的问题:假设每对老鼠每月生子一次,每月生 12 只,且雌雄各半. 1 个月后,有一对老鼠生了 12 只小老鼠,一共有 14 只; 2 个月后,每对老鼠各生了 12 只小老 鼠,一共有 98 只.以此类推,假设 n 个月后共有老鼠 an 只,则 an = . 14.函数 y = (x + 3) - 1, (a > 0 且 a ≠ 1)log 的图象恒过定点 A,若点 A 在直线 mx + ny + 1 = 0 上 (其中 m, n > 0),则 1 m + 2 n 的最小值等于 . 15.已知椭圆 x2 4 + y2 2 = 1 的焦点为 F,短轴端点为 P,若直线 PF 与圆 O : x2 + y2 = R2(R > 0) 相 切,则圆 O 的半径为 . 16.棱长为 12 的正四面体 ABCD 与正三棱锥 E — BCD 的底面重合,若由它们构成的多面体 ABCDE 的顶点均在一球的球面上,则正三楼锥 E — BCD 的体积为 _______,该正三棱锥 内切球的半径为 . 四、解答题: ( 本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.请将答案 填写在答题卡相应的位置上. ) 17.在① cos2B - 3 sinB + 2 = 0,② 2bcosC = 2a - c,③ b a = cosB + 1 3 sinA 三个条件中任选一个, 补充在下面问题中,并加以解答. 已知 △ ABC 的内角 A, B, C 所对的边分别是 a, b, c,若 ______,且 a, b, c 成等差 数列,则 △ ABC 是否为等边三角形?若是,写出证明;若不是,说明理由, 注:如果选择多个条件分别解答,按第一个解答计分. 18.记 Sn 是正项数列 an 的前 n 项和, an + 1 是 4 和 Sn 的等比中项. (1)求数列 an 的通项公式; (2)记 bn = 1 an + 1 ⋅ an + 1 + 1 ,求数列 bn 的前 n 项和 Tn. 19.根据教育部《中小学生艺术素质测评办法》,为提高学生审美素养,提升学生的综合素质,江 苏省中考将增加艺术素质测评的评价制度,将初中学生的艺术素养列入学业水平测试范围.为 初步了解学生家长对艺术素质测评的了解程度,某校随机抽取 100 名学生家长参与问卷测试, 并将问卷得分绘制频数分布表如下: 得分 [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 100] 男性人数 4 9 12 13 11 6 3 女性人数 1 2 2 21 10 4 2 (1)将学生家长对艺术素质评价的了解程度分为“比较了解”(得分不低于 60 分)和“不太了解” (得分低于 60 分)两类,完成 2 × 2 列联表,并判断是否有 99.9% 的把握认为“学生家长对艺术素 质评价的了解程度”与“性别”有关? 不太了解 比较了解 合计 男性 女性 合计 (2)以这 100 名学生家长中“比较了解”的频率代替该校学生家长“比较了解”的概率现在再随机 抽取 3 名学生家长,设这 3 名家长中“比较了解”的人数为 X,求 X 的概率分布和数学期望. 附: X2 = n(ad - bc)2 (a + b) (c + d) (a + c) (b + d) , n = a + b + c + d . 临界值表: P X2 ≥ x0 0.15 0.10 0.05 0.025 0.010 0.005 0.001 x0 2.072 2.706 3.841 5.024 6.635 7.879 10.828 20.如图, AB 是半圆 O 的直径, C 是半圆 O 上除 A, B 外的一个动点, DC 垂直于半圆 O 所在的 平面, DC ∥ EB, DC = EB = 1, AB = 4. (1)证明:平面 ADE ⊥ 平面 ACD; (2)当 C 点为半圆的中点时,求二面角 D ﹣ AE ﹣ B 的余弦值. 21.已知函数 f(x) = 1 3 x3 + (a + 2) 2 x2 + 2ax. (1)当 a = 2 时,求过坐标原点且与函数 y = f x 的图像相切的直线方程; (2)当 a ∈ 0, 2 时,求函数 f x 在 -2a, a 上的最大值. 22.已知点 P(1, 3 2 ) 在椭圆 C: x2 a2 + y2 b2 = 1(a > b > 0) 上, F(1, 0) 是椭圆的一个焦点. (1)求椭圆 C 的方程; (2)椭圆 C 上不与 P 点重合的两点 D, E 关于原点 O 对称,直线 PD, PE 分别交 y 轴 于 M, N 两点.求证:以 MN 为直径的圆被直线 y = 3 2 截得的弦长是定值.查看更多