高考 圆锥曲线 知识总结

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

高考 圆锥曲线 知识总结

‎(一)椭圆及其标准方程 1. 椭圆的定义:椭圆的定义中,平面内动点与两定点、的距离的和大于||这个条件不可忽视.若这个距离之和小于||,则这样的点不存在;若距离之和等于||,则动点的轨迹是线段.‎ ‎2.椭圆的标准方程:(>>0),(>>0).‎ ‎3.椭圆的标准方程判别方法:判别焦点在哪个轴只要看分母的大小:如果项的分母大于项的分母,则椭圆的焦点在x轴上,反之,焦点在y轴上.‎ ‎4.求椭圆的标准方程的方法:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.‎ ‎(二)椭圆的简单几何性质 1. 椭圆的几何性质:设椭圆方程为(>>0).‎ ‎⑴ 范围: -a≤x≤a,-b≤x≤b,所以椭圆位于直线x=和y=所围成的矩形里. ‎ ‎⑵ 对称性:分别关于x轴、y轴成轴对称,关于原点中心对称.椭圆的对称中心叫做椭圆的中心.‎ ‎⑶ 顶点:有四个(-a,0)、(a,0)(0,-b)、(0,b).线段、分别叫做椭圆的长轴和短轴.它们的长分别等于‎2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长. 所以椭圆和它的对称轴有四个交点,称为椭圆的顶点.‎ ‎⑷ 离心率:椭圆的焦距与长轴长的比叫做椭圆的离心率.它的值表示椭圆的扁平程度.0<e<1.e越接近于1时,椭圆越扁;反之,e越接近于0时,椭圆就越接近于圆.‎ ‎ 2.椭圆的第二定义 ‎⑴ 定义:平面内动点M与一个顶点的距离和它到一条定直线的距离的比是常数(e<1=时,这个动点的轨迹是椭圆.‎ ‎⑵ 准线:根据椭圆的对称性,(>>0)的准线有两条,它们的方程为.对于椭圆(>>0)的准线方程,只要把x换成y就可以了,即.‎ ‎3.椭圆的焦半径:由椭圆上任意一点与其焦点所连的线段叫做这点的焦半径.‎ ‎ 设(-c,0),(c,0)分别为椭圆(>>0)的左、右两焦点,M(x,y)是椭圆上任一点,则两条焦半径长分别为,.‎ 椭圆中涉及焦半径时运用焦半径知识解题往往比较简便.椭圆的四个主要元素a、b、c、e中有=+、两个关系,因此确定椭圆的标准方程只需两个独立条件.‎ ‎4.椭圆的参数方程 ‎ 椭圆(>>0)的参数方程为(θ为参数).‎ ‎ 说明: ⑴ 这里参数θ叫做椭圆的离心角.椭圆上点P的离心角θ与直线OP的倾斜角α不同:;‎ ‎⑵ 椭圆的参数方程可以由方程与三角恒等式相比较而得到,所以椭圆的参数方程的实质是三角代换. 椭圆的参数方程是.‎ ‎5.椭圆的的内外部 ‎(1)点在椭圆的内部.‎ ‎(2)点在椭圆的外部.‎ ‎6. 椭圆的切线方程 ‎ ‎(1)椭圆上一点处的切线方程是.‎ ‎ (2)过椭圆外一点所引两条切线的切点弦方程是.‎ ‎(3)椭圆与直线相切的条件是 ‎(三)双曲线及其标准方程 1. 双曲线的定义:平面内与两个定点、的距离的差的绝对值等于常数‎2a(小于||)的动点的轨迹叫做双曲线.在这个定义中,要注意条件‎2a<||,这一条件可以用“三角形的两边之差小于第三边”加以理解.若‎2a=||,则动点的轨迹是两条射线;若‎2a>||,则无轨迹.‎ ‎ 若<时,动点的轨迹仅为双曲线的一个分支,又若>时,轨迹为双曲线的另一支.而双曲线是由两个分支组成的,故在定义中应为“差的绝对值”.‎ 2. 双曲线的标准方程:和(a>0,b>0).这里,其中||=‎2c.要注意这里的a、b、c及它们之间的关系与椭圆中的异同.‎ ‎3.双曲线的标准方程判别方法是:如果项的系数是正数,则焦点在x轴上;如果项的系数是正数,则焦点在y轴上.对于双曲线,a不一定大于b,因此不能像椭圆那样,通过比较分母的大小来判断焦点在哪一条坐标轴上.‎ ‎ 4.求双曲线的标准方程,应注意两个问题:⑴ 正确判断焦点的位置;⑵ 设出标准方程后,运用待定系数法求解.‎ ‎(四)双曲线的简单几何性质 ‎1.双曲线的实轴长为‎2a,虚轴长为2b,离心率>1,离心率e越大,双曲线的开口越大.‎ ‎2. 双曲线的渐近线方程为或表示为.若已知双曲线的渐近线方程是,即,那么双曲线的方程具有以下形式:,其中k是一个不为零的常数.‎ ‎3.双曲线的第二定义:平面内到定点(焦点)与到定直线(准线)距离的比是一个大于1的常数(离心率)的点的轨迹叫做双曲线.对于双曲线,它的焦点坐标是(-c,0)和(c,0),与它们对应的准线方程分别是和.双曲线的焦半径公式,‎ ‎.‎ ‎4.双曲线的内外部 ‎(1)点在双曲线的内部.‎ ‎(2)点在双曲线的外部.‎ ‎5.双曲线的方程与渐近线方程的关系 ‎(1)若双曲线方程为渐近线方程:.‎ ‎(2)若渐近线方程为双曲线可设为.‎ ‎(3)若双曲线与有公共渐近线,可设为(,焦点在x轴上,,焦点在y轴上).‎ ‎6. 双曲线的切线方程 ‎(1)双曲线上一点处的切线方程是.‎ ‎(2)过双曲线外一点所引两条切线的切点弦方程是.‎ ‎(3)双曲线与直线相切的条件是.‎ ‎(五)抛物线的标准方程和几何性质 ‎1.抛物线的定义:平面内到一定点(F)和一条定直线(l)的距离相等的点的轨迹叫抛物线。这个定点F叫抛物线的焦点,这条定直线l叫抛物线的准线。‎ 需强调的是,点F不在直线l上,否则轨迹是过点F且与l垂直的直线,而不是抛物线。‎ ‎2.抛物线的方程有四种类型:、、、.‎ 对于以上四种方程:应注意掌握它们的规律:曲线的对称轴是哪个轴,方程中的该项即为一次项;一次项前面是正号则曲线的开口方向向x轴或y轴的正方向;一次项前面是负号则曲线的开口方向向x轴或y轴的负方向。‎ ‎3.抛物线的几何性质,以标准方程y2=2px为例 ‎(1)范围:x≥0;‎ ‎(2)对称轴:对称轴为y=0,由方程和图像均可以看出;‎ ‎(3)顶点:O(0,0),注:抛物线亦叫无心圆锥曲线(因为无中心);‎ ‎(4)离心率:e=1,由于e是常数,所以抛物线的形状变化是由方程中的p决定的;‎ ‎(5)准线方程;‎ ‎(6)焦半径公式:抛物线上一点P(x1,y1),F为抛物线的焦点,对于四种抛物线的焦半径公式分别为(p>0):‎ ‎ ‎ ‎(7)焦点弦长公式:对于过抛物线焦点的弦长,可以用焦半径公式推导出弦长公式。设过抛物线y2=2px(p>O)的焦点F的弦为AB,A(x1,y1),B(x2,y2),AB的倾斜角为α,则有①|AB|=x+x+p 以上两公式只适合过焦点的弦长的求法,对于其它的弦,只能用“弦长公式”来求。‎ ‎(8)直线与抛物线的关系:直线与抛物线方程联立之后得到一元二次方程:x+bx+c=0,当a≠0时,两者的位置关系的判定和椭圆、双曲线相同,用判别式法即可;但如果a=0,则直线是抛物线的对称轴或是和对称轴平行的直线,此时,直线和抛物线相交,但只有一个公共点。‎ ‎4.抛物线上的动点可设为P或 P,其中 .‎ ‎5.二次函数的图象是抛物线:(1)顶点坐标为;(2)焦点的坐标为;(3)准线方程是.‎ ‎6.抛物线的内外部 ‎(1)点在抛物线的内部.点在抛物线的外部.‎ ‎(2)点在抛物线的内部.点在抛物线的外部.‎ ‎(3)点在抛物线的内部.点在抛物线的外部.‎ ‎(4) 点在抛物线的内部.点在抛物线的外部.‎ ‎7. 抛物线的切线方程 ‎(1)抛物线上一点处的切线方程是.‎ ‎(2)过抛物线外一点所引两条切线的切点弦方程是.‎ ‎(3)抛物线与直线相切的条件是.‎ ‎(六).两个常见的曲线系方程 ‎(1)过曲线,的交点的曲线系方程是 ‎(为参数).‎ ‎(2)共焦点的有心圆锥曲线系方程,其中.当时,表示椭圆; 当时,表示双曲线.‎ ‎(七)直线与圆锥曲线相交的弦长公式 或 ‎(弦端点A,由方程 消去y得到,,为直线的倾斜角,为直线的斜率). ‎ ‎(八).圆锥曲线的两类对称问题 ‎(1)曲线关于点成中心对称的曲线是.‎ ‎(2)曲线关于直线成轴对称的曲线是 ‎.‎ 四.基本方法和数学思想 ‎1.椭圆焦半径公式:设P(x0,y0)为椭圆(a>b>0)上任一点,焦点为F1(-c,0),F2(c,0),则(e为离心率);‎ ‎2.双曲线焦半径公式:设P(x0,y0)为双曲线(a>0,b>0)上任一点,焦点为F1(-c,0),F2(c,0),则:‎ ‎(1)当P点在右支上时,;‎ ‎(2)当P点在左支上时,;(e为离心率);‎ 另:双曲线(a>0,b>0)的渐进线方程为;‎ ‎3.抛物线焦半径公式:设P(x0,y0为抛物线y2=2px(p>0)上任意一点,F为焦点,则;y2=2px(p<0)上任意一点,F为焦点,;‎ ‎4.涉及圆锥曲线的问题勿忘用定义解题;‎ ‎5.共渐进线的双曲线标准方程为为参数,≠0);‎ ‎6.计算焦点弦长可利用上面的焦半径公式,‎ 一般地,若斜率为k的直线被圆锥曲线所截得的弦为AB, A、B两点分别为A(x1,y1)、B(x2,y2),则弦长 ‎ ‎,这里体现了解析几何“设而不求”的解题思想;‎ ‎7.椭圆、双曲线的通径(最短弦)为,焦准距为p=,抛物线的通径为2p,焦准距为p; 双曲线(a>0,b>0)的焦点到渐进线的距离为b;‎ ‎8.中心在原点,坐标轴为对称轴的椭圆,双曲线方程可设为Ax2+Bx2=1;‎ ‎9.抛物线y2=2px(p>0)的焦点弦(过焦点的弦)为AB,A(x1,y1)、B(x2,y2),则有如下结论:(1)=x1+x2+p;(2)y1y2=-p2,x1x2=;‎ ‎10.过椭圆(a>b>0)左焦点的焦点弦为AB,则,过右焦点的弦;‎ ‎11.对于y2=2px(p≠0)抛物线上的点的坐标可设为(,y0),以简化计算;‎ ‎12.处理椭圆、双曲线、抛物线的弦中点问题常用代点相减法,设A(x1,y1)、B(x2,y2)为椭圆(a>b>0)上不同的两点,M(x0,y0)是AB的中点,则KABKOM=;对于双曲线(a>0,b>0),类似可得:KAB.KOM=;对于y2=2px(p≠0)抛物线有KAB=‎ ‎13.求轨迹的常用方法:‎ ‎(1)直接法:直接通过建立x、y之间的关系,构成F(x,y)=0,是求轨迹的最基本的方法;‎ ‎(2)待定系数法:所求曲线是所学过的曲线:如直线,圆锥曲线等,可先根据条件列出所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可;‎ ‎(3)代入法(相关点法或转移法):若动点P(x,y)依赖于另一动点Q(x1,y1)的变化而变化,并且Q(x1,y1)又在某已知曲线上,则可先用x、y的代数式表示x1、y1,再将x1、y1带入已知曲线得要求的轨迹方程;‎ ‎(4)定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程;‎ ‎(5)参数法:当动点P(x,y)坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x、y均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程 有关解析几何的经典结论 一、椭 圆 1. 点P处的切线PT平分△PF‎1F2在点P处的外角.‎ 2. PT平分△PF‎1F2在点P处的外角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.‎ 3. 以焦点弦PQ为直径的圆必与对应准线相离.‎ 4. 以焦点半径PF1为直径的圆必与以长轴为直径的圆内切.‎ 5. 若在椭圆上,则过的椭圆的切线方程是.‎ 1. 若在椭圆外 ,则过Po作椭圆的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.‎ 2. 椭圆 (a>b>0)的左右焦点分别为F1,F 2,点P为椭圆上任意一点,则椭圆的焦点角形的面积为.‎ 3. 椭圆(a>b>0)的焦半径公式:‎ 4. ‎,( , ).‎ 5. 设过椭圆焦点F作直线与椭圆相交 P、Q两点,A为椭圆长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的椭圆准线于M、N两点,则MF⊥NF.‎ 6. 过椭圆一个焦点F的直线与椭圆交于两点P、Q, A1、A2为椭圆长轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.‎ 7. AB是椭圆的不平行于对称轴的弦,M为AB的中点,则,‎ 8. 即。‎ 9. 若在椭圆内,则被Po所平分的中点弦的方程是.‎ 10. 若在椭圆内,则过Po的弦中点的轨迹方程是.‎ 二、双曲线 1. 点P处的切线PT平分△PF‎1F2在点P处的内角.‎ 2. PT平分△PF‎1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.‎ 3. 以焦点弦PQ为直径的圆必与对应准线相交.‎ 4. 以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)‎ 1. 若在双曲线(a>0,b>0)上,则过的双曲线的切线方程是.‎ 2. 若在双曲线(a>0,b>0)外 ,则过Po作双曲线的两条切线切点为P1、P2,则切点弦P1P2的直线方程是.‎ 3. 双曲线(a>0,b>o)的左右焦点分别为F1,F 2,点P为双曲线上任意一点,则双曲线的焦点角形的面积为.‎ 4. 双曲线(a>0,b>o)的焦半径公式:( , ‎ 5. 当在右支上时,,.‎ 6. 当在左支上时,,‎ 7. 设过双曲线焦点F作直线与双曲线相交 P、Q两点,A为双曲线长轴上一个顶点,连结AP 和AQ分别交相应于焦点F的双曲线准线于M、N两点,则MF⊥NF.‎ 8. 过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A1P和A2Q交于点M,A2P和A1Q交于点N,则MF⊥NF.‎ 9. AB是双曲线(a>0,b>0)的不平行于对称轴的弦,M为AB的中点,则,即。‎ 10. 若在双曲线(a>0,b>0)内,则被Po所平分的中点弦的方程是.‎ 11. 若在双曲线(a>0,b>0)内,则过Po的弦中点的轨迹方程是.‎ 椭圆与双曲线的对偶性质--(会推导的经典结论)‎ 椭 圆 1. 椭圆(a>b>o)的两个顶点为,,与y轴平行的直线交椭圆于P1、P2时A1P1与A2P2交点的轨迹方程是.‎ 2. 过椭圆 (a>0, b>0)上任一点任意作两条倾斜角互补的直线交椭圆于B,C两点,则直线BC有定向且(常数).‎ 3. 若P为椭圆(a>b>0)上异于长轴端点的任一点,F1, F 2是焦点, , ,则.‎ 4. 设椭圆(a>b>0)的两个焦点为F1、F2,P(异于长轴端点)为椭圆上任意一点,在△PF‎1F2中,记, ,,则有.‎ 5. 若椭圆(a>b>0)的左、右焦点分别为F1、F2,左准线为L,则当0<e≤时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.‎ 6. P为椭圆(a>b>0)上任一点,F1,F2为二焦点,A为椭圆内一定点,则,当且仅当三点共线时,等号成立.‎ 7. 椭圆与直线有公共点的充要条件是.‎ 8. 已知椭圆(a>b>0),O为坐标原点,P、Q为椭圆上两动点,且.(1);(2)|OP|2+|OQ|2的最大值为;(3)的最小值是.‎ 9. 过椭圆(a>b>0)的右焦点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,则.‎ 10. 已知椭圆( a>b>0) ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点, 则.‎ 11. 设P点是椭圆( a>b>0)上异于长轴端点的任一点,F1、F2为其焦点记,则(1)‎ ‎.(2) .‎ 1. 设A、B是椭圆( a>b>0)的长轴两端点,P是椭圆上的一点,, ,,c、e分别是椭圆的半焦距离心率,则有(1).(2) .(3) .‎ 2. 已知椭圆( a>b>0)的右准线与x轴相交于点,过椭圆右焦点的直线与椭圆相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.‎ 3. 过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.‎ 4. 过椭圆焦半径的端点作椭圆的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.‎ 5. 椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率). ‎ 6. ‎(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)‎ 7. 椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.‎ 8. 椭圆焦三角形中,半焦距必为内、外点到椭圆中心的比例中项.‎ 双曲线 1. 双曲线(a>0,b>0)的两个顶点为,,与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹方程是.‎ 2. 过双曲线(a>0,b>o)上任一点任意作两条倾斜角互补的直线交双曲线于B,C两点,则直线BC有定向且(常数).‎ 3. 若P为双曲线(a>0,b>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点, , ,则(或).‎ 4. 设双曲线(a>0,b>0)的两个焦点为F1、F2,P(异于长轴端点)为双曲线上任意一点,在△PF‎1F2中,记, ,,则有.‎ 5. 若双曲线(a>0,b>0)的左、右焦点分别为F1、F2,左准线为L,则当1<e≤时,可在双曲线上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项.‎ 6. P为双曲线(a>0,b>0)上任一点,F1,F2为二焦点,A为双曲线内一定点,则 ‎,当且仅当三点共线且和在y轴同侧时,等号成立.‎ 1. 双曲线(a>0,b>0)与直线有公共点的充要条件是.‎ 2. 已知双曲线(b>a >0),O为坐标原点,P、Q为双曲线上两动点,且.‎ 3. ‎(1);(2)|OP|2+|OQ|2的最小值为;(3)的最小值是.‎ 4. 过双曲线(a>0,b>0)的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,则.‎ 5. 已知双曲线(a>0,b>0),A、B是双曲线上的两点,线段AB的垂直平分线与x轴相交于点, 则或.‎ 6. 设P点是双曲线(a>0,b>0)上异于实轴端点的任一点,F1、F2为其焦点记,则(1).(2) .‎ 7. 设A、B是双曲线(a>0,b>0)的长轴两端点,P是双曲线上的一点,, ,,c、e分别是双曲线的半焦距离心率,则有(1).‎ 8. ‎(2) .(3) .‎ 9. 已知双曲线(a>0,b>0)的右准线与x轴相交于点,过双曲线右焦点的直线与双曲线相交于A、B两点,点在右准线上,且轴,则直线AC经过线段EF 的中点.‎ 10. 过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,则相应交点与相应焦点的连线必与切线垂直.‎ 11. 过双曲线焦半径的端点作双曲线的切线交相应准线于一点,则该点与焦点的连线必与焦半径互相垂直.‎ 12. 双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).‎ 13. ‎(注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点).‎ 14. 双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.‎ 15. 双曲线焦三角形中,半焦距必为内、外点到双曲线中心的比例中项.‎ 其他常用公式:‎ ‎1、连结圆锥曲线上两个点的线段称为圆锥曲线的弦,利用方程的根与系数关系来计算弦长,常用的弦长公式:‎ ‎2、直线的一般式方程:任何直线均可写成(A,B不同时为0)的形式。‎ ‎3、知直线横截距,常设其方程为(它不适用于斜率为0的直线)与直线垂直的直线可表示为。‎ ‎4、两平行线间的距离为。‎ ‎5、若直线与直线平行 则 (斜率)且(在轴上截距) (充要条件)‎ ‎6、圆的一般方程:,特别提醒:只有当时,方程才表示圆心为,半径为的圆。二元二次方程表示圆的充要条件是且且。‎ ‎ 7、圆的参数方程:(为参数),其中圆心为,半径为。圆的参数方程的主要应用是三角换元:;‎ ‎8、为直径端点的圆方程 切线长:过圆()外一点所引圆的切线的长为()‎ ‎9、弦长问题:①圆的弦长的计算:常用弦心距,弦长一半及圆的半径所构成的直角三角形来解:;②过两圆、交点的圆(公共弦)系为,当时,方程为两圆公共弦所在直线方程.‎
查看更多

相关文章

您可能关注的文档