- 2021-05-11 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学考前天每天必看系列材料之一
选校网 www.xuanxiao.com 高考频道 专业大全 历年分数线 上万张大学图片 大学视频 院校库 2007年高考数学考前12天每天必看系列材料之一 2007年5月26日星期六 亲爱的同学们,2007年高考在即,我给大家精心编写了《2007年高考数学考前12天每天必看系列材料》,每一天的材料由四个部分组成,分别为《基本知识篇》、《思想方法篇》、《回归课本篇》和《错题重做篇》,这些内容紧密结合2007年的数学考试大纲,真正体现狠抓双基、突出能力、回归课本、强调思想方法、讲究考试答题技术,引领你们充满自信,笑傲高考。请每天抽出40分钟读和写。边读边回想曾经学习过的知识,边读边思考可能的命题方向,边读边整理纷繁复杂的知识体系等非常有必要!衷心祝愿2007届考生在6月7日的高考中都取得满意的成绩。 一、 基本知识篇 (一)集合与简易逻辑 1.研究集合问题,一定要抓住集合的代表元素,如:与及 2.数形结合是解集合问题的常用方法,解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决; 3.一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题; 4.判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假; 5.判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法; 6.(1)含n个元素的集合的子集个数为,真子集(非空子集)个数为-1; (2) (3)。 二、 思想方法篇 (一)函数方程思想 函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。 1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想; 2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想; 3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。 三、 回归课本篇:高一年级上册(1) (一)选择题 1.如果X = ,那么(高一上40页例1(1)) (A) 0 Í X (B) {0} Î X (C) F Î X (D) {0} Í X 2.ax2 + 2x + 1 = 0至少有一个负实根的充要条件是(高一上43页B组6) (A)00, a ≠ 1)。(1)求f(x)的定义域;(2)求使f(x)>0的x取值范围。(高一上99页例3) 19.98页例题2 《回归课本篇》(高一年级上册(1))参考答案 1--4 DCBC 9. {(1,2)} 10. (-¥,-3]∪(2,5] 11. (1,3) 12. ;(0,1)∪(1, + ¥) 。;[0,1) 16.略 17. 略 18.答案:参看课本P99(注意变化不同处) 19. 参看课本P98 例题2 四、错题重做篇 (一)集合与简易逻辑部分 1.已知集合A={xx2+(p+2)x+1=0, p∈R},若A∩R+=。则实数P的取值范围为 。 2.已知集合A={x| -2≤x≤7 }, B={x|m+1<x<2m-1},若A∪B=A,则函数m的取值范围是_________________。 A.-3≤m≤4 B.-3<m<4 C.2<m<4 D. m≤4 3.命题“若△ABC有一内角为,则△ABC的三内角成等差数列”的逆命题是( ) A.与原命题真值相异 B.与原命题的否命题真值相异 C.与原命题的逆否命题的真值不同 D.与原命题真值相同 (二)函数部分 4.函数y=的定义域是一切实数,则实数k的取值范围是_____________ 5.判断函数f(x)=(x-1)的奇偶性为____________________ 6.设函数f(x)=,函数y=g(x)的图象与函数y=f-1(x+1)的图象关于直线y=x对称,则g(3)=_____________ 7. 方程log2(9 x-1-5)-log2(3 x-1-2)-2=0的解集为___________________ 【参考答案】 1. P(-4,+∞) 2. D 3. D 4. k 5. 非奇非偶(定义域不关于原点对称) 6. g ( 3 ) = 7. { x = 2} 2007年高考数学考前12天每天必看系列材料之二(2007年5月27日星期日) 一、基本知识篇 (二)函数 1.复合函数的有关问题 (1)复合函数定义域求法:若已知的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。 (2)复合函数的单调性由“同增异减”判定; 2.函数的奇偶性 (1)若f(x)是偶函数,那么f(x)=f(-x)=; (2)若f(x)是奇函数,0在其定义域内,则(可用于求参数); (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或(f(x)≠0); (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性; (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性; 3.函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称; 4.函数的周期性 (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数; (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数; (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数; (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2的周期函数; (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2的周期函数; (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2的周期函数; 5.方程k=f(x)有解k∈D(D为f(x)的值域); 6.a≥f(x) 恒成立a≥[f(x)]max,; a≤f(x) 恒成立a≤[f(x)]min; 7.(1) (a>0,a≠1,b>0,n∈R+); (2) l og a N=( a>0,a≠1,b>0,b≠1); (3) l og a b的符号由口诀“同正异负”记忆; (4) a log a N= N ( a>0,a≠1,N>0 ); 8.能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。 9.判断对应是否为映射时,抓住两点:(1)A中元素必须都有象且唯一;(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象; 10.对于反函数,应掌握以下一些结论:(1)定义域上的单调函数必有反函数;(2)奇函数的反函数也是奇函数;(3)定义域为非单元素集的偶函数不存在反函数;(4)周期函数不存在反函数;(5)互为反函数的两个函数具有相同的单调性;(5) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x ∈A). 11.处理二次函数的问题勿忘数形结合;二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系; 12.恒成立问题的处理方法:(1)分离参数法;(2)转化为一元二次方程的根的分布列不等式(组)求解; 13.依据单调性,利用一次函数在区间上的保号性可解决求一类参数的范围问题:(或(或); 14.掌握函数的图象和性质; 函数 (b – ac≠0) ) 定义域 值域 奇偶性 非奇非偶函数 奇函数 单调性 当b-ac>0时:分别在上单调递减; 当b-ac<0时:分别在上单调递增; 在上单调递增; 在上单调递减; 图象 y x o x=-c y=a x y o 15.实系数一元二次方程的两根的分布问题: 根的情况 等价命题 在上有两根 在上有两根 在和上各有一根 充要条件 注意:若在闭区间讨论方程有实数解的情况,可先利用在开区间上实根分布的情况,得出结果,在令和检查端点的情况。 二、思想方法篇 (二)数形结合思想 数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。 1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。 2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。 3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。 4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性, 或者借助于形的几何直观性来阐明数之间的某种关系. 5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。而以形为手段的数形结合在高考客观题中体现。 6.我们要抓住以下几点数形结合的解题要领: (1) 对于研究距离、角或面积的问题,可直接从几何图形入手进行求解即可; (2) 对于研究函数、方程或不等式(最值)的问题,可通过函数的图象求解(函数的零点,顶点是关键点),作好知识的迁移与综合运用; (3) 对于以下类型的问题需要注意:可分别通过构造距离函数、斜率函数、截距函数、单位圆x2+y2=1上的点及余弦定理进行转化达到解题目的。 三、回归课本篇:高一年级上册(2) (一)选择题 5.已知x + x – 1 = 3,则 + 的值为 (A) 3 (B) 2 (C) 4 (D) -4 6.下列函数中不是奇函数的是 (A) y = (B) y = (C) y = (D) y = log a 7.下列四个函数中,不满足f()≤的是 (A) f(x) = ax + b (B) f(x) = x2 + ax + b (C) f(x) = (D) f(x) = - lnx 8.已知数列{an}的前n项的和 Sn= an - 1(a是不为0的实数),那么{an} (A) 一定是等差数列 (B) 一定是等比数列 (C) 或者是等差数列,或者是等比数列 (D) 既不可能是等差数列,也不可能是等比数列 (二)填空题 13.已知数列{an}的通项公式为a n = pn + q,其中p,q是常数,且,那么这个数列是否一定是等差数列?______ 如果是,其首项是______,公差是________. (高一上113页例题4) 14.下列命题中正确的是 。(把正确的题号都写上) (1)如果已知一个数列的递推公式,那么可以写出这个数列的任何一项; (2)如果{an}是等差数列,那么{an2}也是等差数列; (3)任何两个不为0的实数均有等比中项; (4)已知{an}是等比数列,那么{}也是等比数列 15.顾客购买一件售价为5000元的商品,如果采取分期付款,那么在一年内将款全部付清的前提下,商店又提出了下表所示的几种付款方案,供顾客选择: 方案类别 分几次付清 付款方法 每期所付款额 付款总额 与一次性付款差额 1 3次 购买后4个月第一次付款,再过4个月第二次付款,在过4个月第三次付款 2 6次 购买后2个月第一次付款,再过2个月第二次付款……购买后12个月第6次付款. 3 12次 购买后1个月第1次付款,过1个月第2次付款……购买后12个月第12次付款. 注 规定月利率为0.8%,每月利息按复利计算 说明:1.分期付款中规定每期所付款额相同. 2.每月利息按复利计算,是指上月利息要计入下月本金. (对比高一上130页研究性学习) (三)解答题 19.已知Sn是等比数列 {an} 的前项和S3,S9,S6,成等差数列,求证a2,a8,a5成等差数列。 20 .在数列{an}中,a1 = 1,an+1 = 3Sn(n≥1),求证:a2,a3,┅,an是等比数列。(高一上137页B组5) 《回归课本篇》(高一年级上册(2))参考答案 5—8 BACC 13. 是、p + q、p 14. (1)(4) 15. 答案:看课本P134 19. 略 20.略 四、错题重做篇 (三)数列部分 8.x=是a、x、b成等比数列的( ) 条件 A.充分非必要 B.必要非充分 C.充要 D.既非充分又非必要条 9.已知数列{an}的前n项和Sn=an-1(a),则数列{an}_______________ A.一定是等差数列 B.一定是等比数列 C.或者是等差数列或者是等比数列 D.既非等差数列又非等比数列 10.A·P{an}中, a1=25, S17=S9,则该数列的前__________项之和最大,其最大值为_______。 【参考答案】 8. D 9. C 10. 13 , 169 2007年高考数学考前12天每天必看系列材料之三(2007年5月28日星期一) 科学安排有效减压 2007高考考前十天巧安排 考试前十天是复习冲刺的最后阶段,决战前的部署至关重要。 1.要保持自己平时的学习和生活节奏,适当减轻复习的密度和难度,可以收到“退一步,进两步”的效果。 要保持大脑皮层中等的兴奋度(既不过分放松也不过分紧张),要避免和他人进行无谓的辩论和争吵,不搞剧烈的文体活动。这样,就能在考试前夕,创造一个良好的心境。 2.抓知识的主干,进行强化记忆。 总的原则是回归基础,形成知识网络,把查漏补缺、解决前面复习中出现的问题放在第一位。最后十天的复习更应收缩到教材上来。通过看书上的目录、标题、重点等,一科一科地进行回忆,发现生疏的地方,及时重点补习一下,已经熟练掌握了的内容,可以“一带而过”。还可以看自己整理的提纲、图表、考卷,重温重要的公式、定理等。这十天的复习,就像运动员在比赛前的准备活动或适应性练习一样。通过这十天的“收缩复习”“强化记忆”,可以进一步为高考打下坚实的知识基础,熟练地掌握知识的整体框架,以便能在考试中根据主干线索迅速回忆,让自己的答案做到“八九不离十”。 3.稳定情绪、修炼镇静、入睡。 高考成绩的好坏与情绪稳定的关系很大,而考生难免会在考试前十天有不同程度的焦虑。优化情绪的辅助办法有: (1)深呼吸。复习完功课后,做深呼吸。要缓慢、放松,吸完一口气后,略停1秒钟再吐气,如此反复多次。 (2)按摩内关。用右手大拇指按住左手臂内侧内关(手掌纹下三横指正中处通常是表带处),顺时针按摩36次,在心里默念“镇静”,这当然也是一种强烈的心理暗示。 (3)坐着或者站立,身体放松,想像着自己淋雨,自我想像雨水将所有的疲劳和焦虑冲洗掉。当然在自己冲凉时,想像着把自己的紧张、疲劳、焦虑冲刷掉的效果会更好。 (4)按摩涌泉。晚上淋浴完后,用右手的大拇指按摩脚心的涌泉,次数不限,心里同时默念“入睡”。也可以在床上将自己的意念用在脚心的涌泉,默念“入睡”。 4.进入全真模拟状态。 (1)早起半小时和晚睡半小时。心理学界有一个普遍的共识,这两段时间是最佳的记忆时间,所以:要充分利用这1个小时。 (2)要在上午9:00和下午3:00开始复习,因为这两个时间段和高考时问程序表一致。这样才能在高考时,顺利进入高考状态。 (3)每天做一套容易的卷子(可以是做过的试卷)。有条件上网的同学可以到我的主页http://yf6504.anytome.com/6820418131452020050225/77.xml中的“高中数学自动化测试系统”中测试。分章测试。有些人主张高考前十天不做试卷,事实上,每天做一份试卷可以使考生在几天后真正拿到高考试卷时不感到手生,能找到感觉。 (4)高考开始时,平时什么时候睡觉还什么时候睡,千万不要打破自己的习惯. (5)“进入考点,见了老师微微地点点头,不要讲话。见了同学微微地点点头,不要讲话。因为高考前的任何一个话题都可能触及考生的思维,比如一句“好好考啊。”可能不说更好。而且在进入考场之前,要去一次卫生间。交卷之后,要赶快离开,不要和任何同学有任何交流。因为有些同学考完之后会对答案,其实越是会咋呼的学生越是一般的,越是学习好的学生越可能会打鼓。所以考完之后马上撤退,不要和同学有任何交流。考一场忘一场考试,“要想地里不长草,就要让地里种上庄稼。”要想忘记上一场考试,就要仔细考虑下一场考试。 一、基本知识篇 (三)数列 1.由Sn求an,an={ 注意验证a1是否包含在后面an 的公式中,若不符合要单独列出。一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式; 2.等差数列; 3.等比数列; 4.首项为正(或为负)的递减(或递增)的等差数列前n项和的最大(或最小)问题,转化为解不等式解决; 数列单调递增 5.熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想; 6. 在等差数列中,,;在等比数列中,; 7. 当时,对等差数列有;对等比数列有; 8.若{an}、{bn}是等差数列,则{kan+pbn}(k、p是非零常数)是等差数列;若{an}、{bn}是等比数列,则{kan}、{anbn}等也是等比数列; 9. 若数列为等差(比)数列,则也是等差(比)数列; 10. 在等差数列中,当项数为偶数时,;项数为奇数时,(即); 11.若一阶线性递归数列an=kan-1+b(k≠0,k≠1),则总可以将其改写变形成如下形式:(n≥2),于是可依据等比数列的定义求出其通项公式; 二、思想方法篇 (三)分类讨论的数学思想 分类讨论是一种重要的数学思想方法,当问题的对象不能进行统一研究时,就需要对研究的对象进行分类,然后对每一类分别研究,给出每一类的结果,最终综合各类结果得到整个问题的解答。 1.有关分类讨论的数学问题需要运用分类讨论思想来解决,引起分类讨论的原因大致可归纳为如下几种: (1)涉及的数学概念是分类讨论的; (2)运用的数学定理、公式、或运算性质、法则是分类给出的; (3)求解的数学问题的结论有多种情况或多种可能性; (4)数学问题中含有参变量,这些参变量的不同取值导致不同的结果的; (5)较复杂或非常规的数学问题,需要采取分类讨论的解题策略来解决的。 2.分类讨论是一种逻辑方法,在中学数学中有极广泛的应用。根据不同标准可以有不同的分类方法,但分类必须从同一标准出发,做到不重复,不遗漏 ,包含各种情况,同时要有利于问题研究。 三、回归课本篇:高一年级下册(1) 1、若一个6000的角的终边上有一点P(-4 , a),则a的值为 (A) 4 (B) -4 (C) ± 4 (D) 2、 = (A)- (B) ( C) (D)- 3、= (P38例3) (A) - (B) - (C) (D) 4、cosa + sina = (P39例5) (A) 2sin(+ a ) (B) 2sin(+ a ) (C) 2cos (+ a ) (D) 2cos(-a ) 5、tan200 + tan400 + tan200 tan400 = _________。 (P40练习4(1)) 6、(1 + tan440)(1 + tan10) = ______;(1 + tan430)(1 + tan20) = ______;(1 + tan420)(1 + tan30) = ______;(1 + tana )(1 + tanb ) = ______ (其中a + b = 45 0)。 (P89A组16) 7、化简sin500(1 + tan100) 。(P43例3) 8、已知tana = ,则sin2a + sin2a = __________。 9、求证(1)1 + cosa =2cos2 ;(2) 1-cosa =2sin2 ;(3) 1 + sina = (sin+cos )2 ; (4) 1-sina = (sin-cos )2 ;(5) = tan2. (P45例4) (以上结论可直接当公式使用,主要用来进行代数式的配方化简)。 10、cos(p + a ) + cos(p -a )(其中k Î Z) = _________。(P85例1) 11、已知cos(+ x) = ,查看更多