- 2021-05-11 发布 |
- 37.5 KB |
- 63页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考生物重点内容汇编
高中生物必背内容 必修1《分子与细胞知识点》 第1章 走进细胞 1细胞是生物体结构和功能的基本单位 2.生命系统的结构层次是 生物圈、生态系统、群落、种群、个体、 系统、器官、组织、细胞。 3原核细胞:分为细胞膜、细胞质、拟核(无核膜,并不是真正的细胞核)[大肠杆菌/肺炎双球菌/硝化细菌] 4真核细胞:分为细胞膜、细胞质、细胞核等[水绵-绿藻/伞藻/草履虫/变形虫//酵母菌/蛔虫] 5科学家根据有无以核膜为界限的细胞核,将细胞分为原核细胞和真核细胞 原核细胞 真核细胞 细胞壁 较小(1-10微米) 较大(10-100微米) 核结构 没有成形的细胞核,组成核的物质集中在拟核,无核膜、核仁 有成形的细胞核,组成核的物质集中在拟核,有核膜、核仁 细胞器 核糖体 多种细胞器 染色体 无 有 种类 原核生物(细菌、放线菌、蓝藻) 真核生物(植物、动物、真菌-蘑菇) 6光学显微镜的操作步骤:对光→低倍物镜观察(视野亮)→移动视野中央(偏左移左)→高倍物镜观察(视野暗):①只能调节细准焦螺旋;②调节大光圈、凹面镜 7细胞学说建立者是施莱登和施旺,细胞学说建立揭示了细胞的统一性和生物体结构的统一性。细胞学说建立过程,是一个在科学探究中开拓、继承、修正和发展的过程,充满耐人寻味的曲折 第二章、组成细胞的分子 第一节:细胞中的元素和化合物 一、组成生物体的化学元素 组成生物体的化学元素虽然大体相同,但是含量不同。根据组成生物体的化学元素,在生物体内含量的不同,可分为大量元素和微量元素。其中大量元素有C H O N P S K Ca Mg;微量元素有Fe Mn Zn Cu B Mo等(谐音:猛铁碰新木桶) 二、组成生物体的化学元素的重要作用 大量元素中,C H O N是构成细胞的基本元素,其中碳是最基本的元素;微量元素在生物体内的含量虽然极少,却是维持正常生命活动不可缺少的。 三、生物界与非生物界的统一性和差异性 组成生物体的化学元素,在自然界中都可以找到,没有一种是生物界所特有的。这个事实说明生物界与非生物界具有统一性;组成生物体的化学元素,在生物体内和在无机自然界中的含量相差很大。这个事实说明生物界与非生物界具有差异性。 四、构成细胞的化合物 P17 在活细胞中含量最多的化合物是水(85%-90%);含量最多的有机物是蛋白质(7%-10%);占细胞鲜重比例最大的化学元素是O、占细胞干重比例最大的化学元素是C、占细胞干重比例最大的化合物是蛋白质。 第二节:蛋白质 蛋白质的基本组成单位是氨基酸,生物体中组成蛋白质的氨基酸大约有20种,在结构上都符合结构通式 。氨基酸分子间以肽键的方式互相结合。由两个氨基酸分子缩合而成的化合物称为二肽,由多个氨基酸分子缩合而成的化合物称为多肽 ,其通常呈链状结构,称为肽链。一个蛋白质分子可能含有一条或几条 肽链,通过盘曲﹑折叠形成复杂(特定)的空间结构。蛋白质分子结构具有多样性的特点,其原因是:构成蛋白质的氨基酸种类不同、数目成百上千、氨基酸排列顺序千变万化 、多肽链形成的空间结构千差万别。由于结构的多样性,蛋白质在功能上也具有多样性 的特点,其功能主要如下:(1)结构蛋白,如肌肉、载体蛋白、血红蛋白;(2)信息传递,如胰岛素(3)免疫功能,如抗体;(4)大多数酶是蛋白质如胃蛋白酶(5)细胞识别,如 细胞膜上的糖蛋白 。总而言之,一切生命活动都离不开蛋白质,蛋白质是生命活动的主要承担者。 脱水缩合:一个氨基酸分子的氨基(—NH2)与另一个氨基酸分子的羧基(—COOH)相连接,同时失去一分子水。 有关计算: ① 肽键数 = 脱去水分子数 = 氨基酸数目 — 肽链数 ② 至少含有的羧基(—COOH)或氨基数(—NH2) = 肽链数 第三节:核 酸 核酸是遗传信息的载体,是一切生物的遗传物质,对于生物体的遗传和变异、蛋白质的生物合成 有极其重要作用。核酸包括脱氧核糖核酸(DNA)和核糖核酸 (RNA) 两大类,基本组成单位是核苷酸,由一分子含氮碱基 ﹑一分子五碳糖和一分子磷酸 组成。组成核酸的碱基有5 种,五碳糖有2 种,核苷酸有8种。 脱氧核糖核酸简称DNA ,主要存在于细胞核 中,细胞质中的线粒体和叶绿体也是它的载体。 核糖核酸简称RNA ,主要存在于细胞质中。对于有细胞结构(同时含DNA和RNA)的生物,其遗传物质就是DNA;没有细胞结构的病毒,有的遗传物质是DNA如:噬菌体等;有的遗传物质是RNA如:烟草花叶病毒、HIV等 第四节:细胞中的糖类和脂质 糖类分子都是由C、H、O三种元素组成。糖类是细胞的主要能源物质。 糖类可分为单糖、二糖和多糖等几类。单糖是不能再水解的糖, 常见的有葡萄糖、果糖、半乳糖、核糖、脱氧核糖,其中葡萄糖 是细胞的重要能源物质,核糖和脱氧核糖一般不作为能源物质,它们是核酸的组成成分;二糖中蔗糖和麦芽糖是植物糖,乳糖、糖原 是动物糖;多糖中糖原 是动物糖 ,淀粉和纤维素是植物糖 ,糖原和淀粉是细胞中重要的储能物质。 脂质主要是由C H O 3种化学元素组成,有些还含有P (如磷脂) 。脂质包括脂肪、磷脂、和固醇、。脂肪是生物体内的储能物质。 除此以外,脂肪还有保温、缓冲、减压的作用;磷脂是构成包括细胞膜在内的膜物质重要成分;固醇类物质主要包括胆固醇、性激素、维生素D等,这些物质对于生物体维持正常的生命活动,起着重要的调节作用。 多糖、蛋白质、核酸等都是生物大分子,组成它们的基本单位分别是单糖(葡萄糖)﹑氨基酸和核苷酸,这些基本单位称为单体,这些生物大分子就称为单体的多聚体,每一个单体都以若干个相连的碳原子构成的碳链为基本骨架,由许多单体连接成多聚体 。 第五节:细胞中的无机物 水是活细胞中含量最多的化合物。不同种类的生物体中,水的含量不同 ;不同的组织﹑器官中,水的含量也不同。 细胞中水的存在形式有自由水和结合水两种,结合水与其他物质相结合,是细胞结构的重要组成成分,约占4.5%;自由水以游离的形式存在,是细胞的良好溶剂,也可以直接参与生物化学反应,还可以运输营养物质和废物 。总而言之,各种生物体的一切生命活动都离不开水。 细胞内无机盐大多数以离子状态存在,其含量虽然很少 ,但却有多方面的重要作用:有些无机盐是细胞内某些复杂化合物的重要组成成分 ,如Fe是血红蛋白的主要成分,Mg 是叶绿素分子必需的成分;许多无机盐离子对于维持细胞和生物体的生命活动 有重要作用,如血液中钙离子含量太低就会出现抽搐现象;无机盐对于维持细胞的酸碱平衡 也很重要。 细胞内有机物质的鉴定 糖类中的还原糖(葡萄糖、果糖)能与斐林试剂发生作用,生成砖红色沉淀; 脂肪 可以被苏丹Ⅳ染成橘黄色 ;蛋白质与双缩脲试剂发生作用,产生紫色反应 。在还原糖的检测中,斐林试剂甲液和乙液应等量混合均匀后再使用 ,并且要水裕加热;在蛋白质的检测中,在组织样液中应先加入双缩脲试剂A液1ml,再加入双缩脲试剂B液 4滴,不需加热。 甲基绿能使DNA呈现绿色,吡罗红能使RNA呈现红色,因此利用这两种染色剂将细胞染色,可以显示DNA和RNA在细胞中的分布。在此实验中,盐酸的作用是改变膜的通透性,加速色素进入细胞 。用人的口腔上皮细胞做实验材料,此实验的步骤是制片、水解、冲洗涂片、染色、观察 第三章 细胞的基本结构 除了病毒等少数生物之外,所有的生物体都是由细胞构成的。细胞是生物体的结构和功能的基本单位。 病毒的化学成分为:DNA和蛋白质 或 RNA和蛋白质 一、真核细胞的结构和功能 (一)细胞壁 植物细胞在细胞膜的外面有一层细胞壁,其主要成分为纤维素和果胶,可用纤维素酶和果胶酶来除去。细胞壁作用为支持和保护。 (二)细胞膜 对细胞膜进行化学分析得知,细胞膜主要由脂质(磷脂)分子和蛋白质分子构成,其中脂质最多,约占50%;此外,还有少量的糖类。在组成细胞膜的脂质中,磷脂最丰富。细胞膜的功能是将细胞与外界环境分隔开、控制物质进出细胞、进行细胞间的信息交流 (三)细胞质 在细胞膜以内,核膜以外的部分叫细胞质。活细胞的细胞质处于不断流动的状态,细胞质主要包括细胞质基质和细胞器。 1、细胞质基质 细胞质基质含有水、无机盐、脂质、糖类、氨基酸、核苷酸、多种酶,在细胞质中进行着多种化学反应。 2、细胞器 (1)线粒体 线粒体广泛存在于细胞质基质中,它是有氧呼吸主要场所,被喻为“动力车间”。 光镜下线粒体为椭球形,电镜下观察,它是由双层膜构成的。外膜使它与周围的细胞质基质分开,内膜 的某些部位向内折叠形成嵴,这种结构使线粒体内的膜面积 增加。在线粒体内有许多种与有氧呼吸有关的酶,还含有少量的DNA 。 (2)叶绿体 叶绿体是植物、叶肉、细胞特有的细胞器。叶绿体是绿色植物的光合作用细胞中,进行的细胞器,被称为 “养料制造车间” 和“能量转换站” 。在电镜下可以看到叶绿体外面有双层膜,内部含有几个到几十个由囊状的结构堆叠成的基粒 ,其间充满了基质 。这些囊状结构被称为类囊体,其上含有叶绿素。 (3)内质网 内质网是由单层膜连接而成的网状结构,大大增加了细胞内的膜面积,内质网与细胞内蛋白质合成 和加工有关,也是脂质 合成的“车间”。 (4)核糖体 细胞中的核糖体是颗粒状小体,它除了一部分附着在内质网上之外,还有一部分游离在 细胞质中。核糖体是细胞内合成蛋白质 的场所,被称为“生产蛋白质的机器”。 (5)高尔基体 高尔基体本身不能合成蛋白质,但可以对蛋白质进行加工分类和包装 ,植物细胞分裂过程中,高尔基体与细胞壁的形成有关。 (6)液泡 成熟的植物细胞都有液泡。液泡内有细胞液 ,其中含有糖类、无机盐、色素、蛋白质等物质,它对细胞内的环境起着调节作用,可以使细胞保持一定的形状,保持膨胀状态。 (7)中心体 动物细胞和低等植物细胞中有中心体,每个中心体由两个互相垂直排列的中心粒,及其周围物质组成。动物细胞的中心体与有丝分裂有关。 (8)溶酶体 溶酶体是细胞内具有 单层膜 结构的细胞器,它含有多种水解酶 ,能分解多种物质。 (四)细胞核 每个真核细胞通常只有一个 细胞核,而有的细胞有两个以上的细胞核,如人的肌肉细胞,有的细胞却没有细胞核,如哺乳动物的红细胞细胞。 1、结构 在电镜下观察经过固定、染色的有丝分裂间期的真核细胞可知其细胞核主要结构有。 核膜、核仁、染色质 核膜由双层膜构成,膜上有核孔,是细胞核和细胞质之间物质交换和信息交流 的孔道。 核仁在不同种类的生物中,形态和数量不同,它在细胞分裂过程中周期性地消失和重现。核仁与某种RNA的合成以及核糖体的形成有关。 染色质主要由DNA和蛋白质组成,能被碱性染料染成深色 。在细胞有丝分裂间期,染色质呈丝状,并交织成网;在分裂期染色质螺旋化化,缩短变粗,变成一条圆柱状或杆状的染色体,因此,染色质和染色体是细胞中同种物质在不同时期的两种形态。 2、功能 细胞核是遗传物质 和 的主要场所,是细胞 和细胞 的控制中心,因此,细胞核是细胞中最重要的部分。储存、复制、代谢、遗传 (五) 细胞的生物膜系统 在上述细胞结构和细胞器中,具有双层膜有线粒体、叶绿体,具有单层膜的有内质网、高尔基体、溶酶体、液泡。它们都由生物膜构成,这些细胞器膜和细胞膜、核膜等结构,共同构成细胞的生物膜系统。 细胞的生物膜系统在细胞的生命活动中起着极其重要的作用。 首先,细胞膜不仅使细胞具有一个相对稳定的内环境,同时在细胞与环境之间进行物质运输、能量转换 和信息传递的过程中也起着决定性的作用。 第二,细胞的许多重要的化学反应都在生物膜上进行。 细胞内的广阔的膜面积为酶提供了大量的附着位点,为各种化学反应的顺利进行创造了有利条件。 第三,细胞内的生物膜把细胞分隔成一个个小的区室,这样就使得细胞内能够同时进行多种化学反应,而不会相互干扰,保证了细胞的生命活动高效、有序地进行。 第四章 细胞的物质输入和输出 1、“水分进出哺乳动物红细胞的状况”的三幅图片(见课本P60)。 正常生活着的红细胞内的血红蛋白等有机物能够透过细胞膜到膜外吗?不会 根据现象判断红细胞的细胞膜相当于什么膜?答:半透膜 当外界溶液的浓度低时,红细胞一定会吸水而涨破吗?答:不是 红细胞吸水或失水的多少取决于什么?答:两边溶液中水的相对含量的差值。 2、对于植物细胞来说水分要进出细胞必须要通过原生质层。原生质层相当于半透膜,植物细胞膜和液泡膜都是生物膜,(P61)他们具有与红细胞的细胞膜基本相同的化学组成和结构。上述的事例与红细胞的失水和吸水很相似。 3、紫色洋葱鳞片叶细胞的质壁分离与复原 中央液泡大小 原生质层的位置 细胞大小 30%蔗糖溶液 变小(细胞失水) 原生质层脱离细胞壁 变小 清水 逐渐恢复原来大小(细胞吸水) 原生质层恢复原来位置 基本不变 4、在建立生物膜模型的过程中,实验技术的进步起到了关键性的推动作用。如电子显微镜的诞生使人们终于看到了膜的存在;冰冻蚀刻技术和扫描电子显微镜技术使人们认识到膜的内外两侧并不对称;荧光标记小鼠细胞与人细胞的融合实验又证明了膜的流动性等。没有这些技术的支持,人类的认识便不能发展。 5、阐述流动镶嵌模型的基本内容 P68。 6、物质进出细胞的方式 运输方式 运输方向 是否需要载体 是否消耗能量 示例 自由扩散 高浓度到低浓度 否 否 水、气体、脂类(因为细胞膜的主要成分是脂质,如甘油) 主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等 协助扩散 高浓度到低浓度 是 否 主动运输的意义是保证活细胞按照生命活动需要,主动吸收营养物质,排出代谢废物和有 害物质。 第五章 细胞的能量供应和利用 1、美国科学家萨姆纳通过实验证实酶是一类具有催化作用的蛋白质,科学家切赫和奥特曼发现少数RNA也具有生物催化作用。总之,酶是活细胞产生的一类催化作用的有机物,胃蛋白酶、唾液淀粉酶等绝大多数的酶是蛋白质,少数的酶是RNA。不能说所有的蛋白质和RNA都是酶,只是具有催化作用的蛋白质或RNA,才称为酶。酶的特性有 高效性、专一性 、需要适宜的条件 2、进行有关的实验和探究,学会控制自变量,观察和检测因变量的变化,以及设置对照组和重复实验。 3、ATP中文名叫三磷酸腺苷,结构式简写A-p~p~p,几乎所有生命活动的能量直接来自ATP的水解 ,由ADP合成ATP 所需能量,动物来自呼吸作用,植物来自光合作用和呼吸作用,ATP可在细胞器线粒体或叶绿体中和在细胞质基质中合成。在细胞内ATP含量很少,转化很快,熟悉89页图。 4、构成生物体的活细胞,内部时刻进行着ATP与ADP的相互转化,同时也就伴随有能量的释放_和储存_。故把ATP比喻成细胞内流通着的“通用货币”。 5、呼吸作用的本质是氧化分解有机物,释放能量,不一定需要氧气,分为有氧呼吸和无氧呼吸93页图。, 6、有氧呼吸的反应式: , 第一阶段在细胞质基质 进行,原料是糖类等,产物是 丙酮酸 、氢 、 ATP ,第二阶段在线粒体 进行,原料是丙酮酸和水 ,产物是 C02 、ATP 、氢 ,第三阶段在线粒体进行,原料是 氢 和 氧 ,产物是 水、 ATP ,第一、二阶段的共同产物是氢 、 ATP,三个阶段的共同产物是 ATP 。1mol葡萄糖有氧呼吸产生能量 2870 KJ,可用于生命活动的有1161 KJ( 38molATP),以热能散失 1709 KJ,无氧呼吸产生的可利用能量是 61.08 KJ( 2 molATP),1molATP水解后放出能量 30.54 KJ 。 场所 发生反应 产物 第一阶段 细胞质 基质 葡萄糖 酶 2丙酮酸 少量能量量 [H] + + 丙酮酸、[H]、释放少量能量,形成少量ATP 第二阶段 线粒体 基质 6CO2 6H2O 酶 2丙酮酸 少量能量 [H] + + + CO2、[H]、释放少量能量,形成少量ATP 第三阶段 H2O 酶 大量能量 [H] + + 线粒体 内膜 O2 生成H2O、释放大量能量,形成大量ATP 7、写出2条无氧呼吸反应式 C6H12O6 2C2H5OH(酒精)+2CO2+能量 C6H12O6 2C3H3O3+能量 无氧呼吸的场所是细胞质基质,分 2个阶段,第一个阶段与 有氧 呼吸的相同,是由 葡萄糖分解为 丙酮酸 ,第二阶段的反应是由丙酮酸分解成CO2和酒精 或转化成 C3H3O3(乳酸) 。熟悉95页图。 8、影响呼吸速率的外界因素: 1、温度:温度通过影响细胞内与呼吸作用有关的酶的活性来影响细胞的呼吸作用。 温度过低或过高都会影响细胞正常的呼吸作用。在一定温度范围内,温度越低,细胞呼吸越弱;温度越高,细胞呼吸越强。 2、氧气:氧气充足,则无氧呼吸将受抑制;氧气不足,则有氧呼吸将会减弱或受抑制。 3、水分:一般来说,细胞水分充足,呼吸作用将增强。但陆生植物根部如长时间受水浸没,根部缺氧,进行无氧呼吸,产生过多酒精,可使根部细胞坏死。 4、CO2:环境CO2浓度提高,将抑制细胞呼吸,可用此原理来贮藏水果和蔬菜。 9、呼吸作用在生产上的应用: 1、作物栽培时,要有适当措施保证根的正常呼吸,如疏松土壤等。 2、粮油种子贮藏时,要风干、降温,降低氧气含量,则能抑制呼吸作用,减少有机物消耗。 3、水果、蔬菜保鲜时,要低温或降低氧气含量及增加二氧化碳浓度,抑制呼吸作用。 10、光合作用的的探究历程 ①、1648年海尔蒙脱(比利时),把一棵2.3kg的柳树苗种植在一桶90.8kg的土壤中,然后只用雨水浇灌而不供给任何其他物质,5年后柳树增重到76.7kg,而土壤只减轻了57g。指出:植物的物质积累来自水 ②、1771年英国科学家普里斯特利发现,将点燃的蜡烛与绿色植物一起放在密闭的玻璃罩内,蜡烛不容易熄灭;将小鼠与绿色植物一起放在玻璃罩内,小鼠不容易窒息而死,证明:植物可以更新空气。 ③、1785年,由于空气组成的发现,人们明确了绿叶在光下放出的气体是氧气,吸收的是二氧化碳。 • 1845年,德国科学家梅耶指出,植物进行光合作用时,把光能转换成化学能储存起来。 ④、1864年,德国科学家把绿叶放在暗处理的绿色叶片一半暴光,另一半遮光。过一段时间后,用碘蒸气处理叶片,发现遮光的那一半叶片没有发生颜色变化,曝光的那一半叶片则呈深蓝色。证明:绿色叶片在光合作用中产生了淀粉。 ⑤、1880年,德国科学家思吉尔曼用水绵进行光合作用的实验。证明:叶绿体是绿色植物进行光合作用的场所,氧是叶绿体释放出来的。 ⑥、20世纪30年代美国科学家鲁宾卡门采用同位素标记法研究了光合作用。第一组相植物提供H218O和CO2,释放的是18O2;第二组提供H2 O和C18O,释放的是O2。光合作用释放的氧全部来自来水。 11、叶绿体色素吸收 可见光,主要吸收红橙光和 蓝紫 光,(叶绿素a和叶绿素b主要吸收蓝紫光和红橙光,胡萝卜素和叶黄素主要吸收蓝紫光),光反应的场所是 叶绿体类囊体膜上 ,(因为所有色素和所有光反应的酶都在囊状结构上),原料是 水,ADP、Pi ,动力是 光能 ,产物是 氧、氢和ATP ,暗反应场所是 叶绿体基质 ,原料是 CO2 ,动力是 ATP水解释放的能量 ,产物是有机物(CH2O)和C5 ,光反应为暗反应提供 还原剂氢 和ATP(能量),CO2被还原前先要进行固定 ,C3化合物一部分 被还原为有机物 ,另一部分又变成 五碳化合物 。光合作用的总反应式:CO2+H2O(CH2O)+O2。自然界最基本的物质、能量代谢是光合作用 ,光合作用产生的氧气来自 H20 ,有机物中的O来自 CO2 。光合作用的意义:1.制造有机物,固定太阳能,为其他生物提供物质和能量需要,2.制造氧气,维持O2 与CO2的平衡,使好氧生物得以发展3.形成O3层,使生物由水生向陆生进化。熟悉103页图。 ① ②③④ 12、光合作用的过程: 光 反 应 阶 段 条件 光、色素、酶 场所 光 酶 在类囊体的薄膜上 物质变化 水的分解:H2O → [H] + O2↑ ATP的生成:ADP + Pi → ATP 能量变化 光能→ATP中的活跃化学能 暗 反 应 阶 段 条件 酶、ATP、[H] 场所 酶 叶绿体基质 物质变化 酶 CO2的固定:CO2 + C5 → 2C3 ATP C3的还原: C3 + [H] → (CH2O) 能量变化 光能 ATP中的活跃化学能→(CH2O)中的稳定化学能 总反应式 叶绿体 CO2 + H2O O2 + (CH2O) 13、提高农作物产量的重要条件之一,是提高农作物对光能的利用率。要提高农作物的光能的利用率的方法有: 1)延长光合作用的时间 2)增加光合作用的面积(合理密植,间作套种) 3)光照强弱的控制 4)必需矿质元素的供应 5)CO2的供应(温室栽培多施有机肥或放置干冰,提高二氧化碳浓度)。 影响光合作用速度的曲线分析及应用 因素 图像 关键点的含义 在生产上的应用 单因子影响 光照强度 A点光照强度为0,此时只进行呼吸作用,释放CO2的量,表明此时的呼吸强度。AB段表明随光照强度加强,光合作用逐渐加强,CO2的释放量逐渐减少,有一部分用于光合作用; B点时,呼吸作用释放的CO2全部用于光合作用,即光合作用强度=呼吸作用强度,称B点为光补偿点(植物白天光照强度应在光补偿点以上,植物才能正常生长)。BC段表明随着光照强度不断加强,光合作用强度不断加强,到C点以上不再加强了。C点为光合作用的饱和点。 (1)适当提高光照强度 (2)延长光合作用时间(例:轮作) (3)对温室大棚用无色透明玻璃 (4)若要降低光合作用则用有色玻璃。如用红色玻璃,则透红光吸收其他波长的光,光合能力较白光弱。但较其他单色光强。 O 物 质 的 量 光合面积 叶面积指数 · · · C B A 8 6 4 2 呼吸量 干物质量 光合作用实际量 OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点为光合作用面积的饱和点,随叶面积的增大,光合作用不再增强,原因是有很多叶被遮挡在光补偿点以下。OB段干物质量随光合作用增强而增加,而由于A点以后光合作用量不再增加,而叶片随叶面积的不断增加OC段呼吸量不断增加,所以干物质积累量不断降低如BC段。植物的叶面积指数不能超过C点,若超过C点,植物将入不敷出,无法生活下去。 适当间苗、修剪,合理施肥、浇水,避免陡长,封行过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。温室栽培植物时,可增加光合作用面积,合理密植是增加光合作用面积的一项重要措施。 二氧化碳浓度 CO2是光合作用的原料,在一定范围内,CO2越多,光合作用速率越大,但到A点时,即CO2达到饱和时,就不再增加了 温室栽培植物时适当提高室内CO2的浓度,如释放一定量的干冰或多施有机肥,使根部吸收的CO2增多。大田生产“正其行,通其风”,即为提高CO2浓度、增加产量 温度 光合作用是在酶催化下进行的,温度直接影响酶的活性。一般植物在10℃~35℃下正常进行光合作用,其中AB段(10℃~35℃),随温度的升高而逐渐加强,B点(35℃)以上光合酶活性下降,光合作用开始下降,40℃~50℃光合作用几乎完全停止 (1)适时播种 (2)温室栽培植物时,白天适当提高温度,晚上适当降温 (3)植物“午休”现象的原因之一 叶龄 OA段为幼叶,随幼叶的不断生长,叶面积不断增大,叶内叶绿体不断增多,叶绿素含量不断增加,光合作用速率不断增加。AB段为壮叶,叶片的面积、叶绿体和叶绿素都处于稳定状态,光合速率也基本稳定。BC段为老叶,随叶龄的增加,叶片内叶绿素被破坏,光合速率也随之下降 农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理。又可降低其呼吸作用消耗有机物 矿质元素 矿质元素是光合作用的产物——葡萄糖进一步合成许多有机物时所必需的物质。如缺少N,就影响蛋白质(酶)的合成;缺少P就会影响ATP的合成;缺少Mg就会影响叶绿素的合成 合理施肥可促进叶片面积增大,提高酶的合成率,提高光合作用速率 多因子影响 图像 含义 P点时,限制光合速率的因素应为横坐标所表示的因子,随其因子的不断加强,光合速率不断提高。当到Q点时,横坐标所表示的因子,不再是影响光合速率的因子,要想提高光合速率,可采取适当提高图示的其他因子 应用 温室栽培时,在一定光照强度下,白天适当提高温度,增加光合酶的活性,提高光合速率,也可同时适当充加CO2,进一步提高光合速率。当温度适宜时,可适当增加光照强度和CO2浓度以提高光合作用速率。总之,可根据具体情况,通过增加光照强度,调节或增加CO2浓度来充分提高光合效率,以达到增产的目的 CO2的含量很低时,绿色植物不能制造有机物,随CO2的含量的提高,光合作用逐渐 提高 ;当CO2的含量提高到一定程度时,光合作用的强度不再随CO2的含量的提高而 提高 。光照强度:在一定范围内,光合速率随光照强度的增强而加快,超过光饱合点,光合速率反而会下降。温度:温度可影响酶的活性。 14、自养生物:可将CO2、H2O等无机物合成葡萄糖等有机物,如绿色植物,硝化细菌(化能合成) 异养生物:不能将CO2、H2O等无机物合成葡萄糖等有机物,只能利用环境中现成的有机物来维持自身生命活动,如许多动物。 14、请自行比较光合作用与呼吸作用。 第六章 细胞的生命历程 细胞增殖 细胞增殖是生物的重要生命特征。细胞以分裂方式增殖,通过它,单细胞生物能产生后代,多细胞生物则可以由一个 受精卵 经过 分裂 和 分化 ,最终发育为一个多细胞个体。在增殖过程中可以将复制的遗传物质分配到两个子 细胞中去,可见,细胞增殖是 生物体生长、发育、繁殖、遗传 的基础。 真核细胞的分裂方式有 有丝分裂 、无丝分裂和 减数分裂 。 一、有丝分裂 体细胞的有丝分裂具有细胞周期,它是指 连续分裂的细胞从一次分裂开始时开始,到下一次分裂 完成 时为此, 包括分裂间期 期和分裂期。 1、 分裂间期 分裂间期最大特征是 DNA 分子的复制和有关蛋白质的合成 ,同时细胞有适度的增长 ,对于细胞分裂来说,它是整个周期中 为分裂期作准备的 阶段。 2、 分裂期 (1)前期 最明显的变化是 染色质丝螺旋缠绕,缩短变粗,成为染色体 ,此时每条染色体都含有两条 染色单体,由一个着丝点相连,称为 姐妹染色单体 。同时, 核仁 解体, 核摸消失,纺锤丝形成 纺锤体 。 (2)中期 染色体 清晰可见,每条染色体的着丝点都排列在细胞中央的 一个平面上,染色体的形态 比较稳定,数目 比较清晰,便于观察。 (3)后期 每个 着丝点 一分为二, 姐妹染色单体随之分离,形成两条 子染色体 ,在 纺锤丝的 牵引下向细胞 两极 运动。 (4)末期 染色体到达两极后,逐渐变成丝状的 染色质,同时 纺锤体 消失, 核仁 、核模重新出现,将染色质包围起来,形成两个新的 子细胞 ,然后细胞一分为二。 (5)动植物细胞有丝分裂比较 植物 动物 纺锤体形成方式 由细胞的两极 由中心体 细胞一分为二方式 意义 二、 无丝分裂 无丝分裂比较简单,一般是 细胞核 延长,从 核的中部 向内凹进,分裂为两个 细胞核 ,接着整个细胞从中间分裂为两个细胞。此过程中没有出现纺锤丝和染色体 ,故名无丝分裂,如 蛙的红细胞 的分裂。 二、 细胞的分化、癌变、衰老 一、细胞分化 细胞分化是指在 个体发育 中, 由一个或一种细胞增殖产生 的后代在 形态、 结构 和 生理功能上发生 稳定性 差异的过程。它是一种 持久性 的变化,发生在生物体的 整个生命过程 中,但在 胚胎 时期达到最大限度。经过细胞分化,生物体内会形成各种不同的 细胞 和 组织 ,这种稳定性的差异是 不可逆的 。细胞分化程度:体细胞>胚胎细胞>受精卵 但科学研究证实,高度分化的植物细胞仍然具有发育成 完整植株 的能力,即保持着 全能性 。细胞全能性是指生物体的细胞具有使后代细胞形成 完整 个体的 潜能 的特性。生物体的每一个细胞都包含有该物种所特有的 全部的遗传信息 ,都有发育成为 完整个体所必需的全部遗传物质 。理论上,生物体的每一个活细胞都应该具有 全能性。细胞全能性的大小:受精卵>胚胎细胞>体细胞 通常情况下,生物体内细胞并没有表现出全能性,而是分化成为不同的 细胞 、组织,这是基因在特定的时间和空间条件下基因的选择性表达的结果。 二、细胞的癌变 在个体发育过程中,大多数细胞能够正常分化。但是有些细胞在 致癌 因子的作用下,不能正常分化,而变成不受有机体控制的、 连续 进行分裂的 恶性增殖 细胞,这种细胞就是 癌细胞 。癌细胞与正常细胞相比,具有以下特点:能够无限增殖形态结构发生显著变化;癌细胞表面糖蛋白减少;容易在体内扩散,转移。由于细胞膜上的 糖蛋白 等物质减少,使得细胞彼此之间的 黏着性 减小,导致癌细胞容易在有机体内 分散 和 转移 。 目前认为引起癌变的因子主要有三类:第一类物理致癌因子 ,如辐射致癌;第二类是 化学致癌因子,如砷、苯、煤焦油等;再一类是 病毒致癌因子 ,引起癌变的病毒叫做 致癌病毒 。另外,科学家已证实,癌细胞是由于 原癌基因 激活为 癌基因 而引起的。 二、 细胞的衰老 生物体内的细胞多数要经过未分化、 分裂 、分化 和死亡这几个阶段。因此,细胞的衰老和死亡是一种 正常 的生命现象。衰老细胞具有的主要特征有以下几点: (1) 细胞内的水分减少 ,结果使细胞 萎缩 ,体积变小, 细胞新陈代谢的速率减慢; (2)衰老细胞内, 酶的活性减低 ,如人的头发变白是由于黑色素细胞衰老时, 酪氨酸酶活性 的活性降低;(3)细胞内的色素会随着细胞的衰老而积累,影响细胞的物质交流和信息传递等正常的生理功能,最终导致细胞死亡;(4)细胞膜通透性改变 ,物质运输能力降低。 四、细胞凋亡:基因决定的细胞自动结束生命的过程,是一种正常的自然生理过程,如蝌蚪尾消失,它对于多细胞生物体正常发育,维持内部环境的稳定以及抵御外界因素干扰具有非常关键作用。 细胞坏死:由于电、热、冷、机械等不利因素影响导致细胞非正常性死亡,不受基因控制。 必修2遗传与进化知识点 第一章 遗传因子的发现 第一节 孟德尔豌豆杂交试验(一) 1.孟德尔之所以选取豌豆作为杂交试验的材料是由于: (1)豌豆是自花传粉植物,且是闭花授粉的植物;(2)豌豆花较大,易于人工操作; (3)豌豆具有易于区分的性状。 2.遗传学中常用概念及分析 (1)性状:生物所表现出来的形态特征和生理特性。 相对性状:一种生物同一种性状(如毛色)的不同表现类型(黄、白)。 区分:兔的长毛和短毛;人的卷发和直发等; 兔的长毛和黄毛;牛的黄毛和羊的白毛 性状分离:杂种后代中,同时出现显性性状和隐性性状的现象。如在DD×dd杂交实验中,杂合F1代自交后形成的F2代同时出现显性性状(DD及Dd)和隐性性状(dd)的现象。 显性性状:在DD×dd 杂交试验中,F1表现出来的性状;如教材中F1代豌豆表现出高茎,即高茎为显性。决定显性性状的为显性遗传因子(基因),用大写字母表示。如高茎用D表示。 隐性性状:在DD×dd杂交试验中,F1未显现出来的性状;如教材中F1代豌豆未表现出矮茎,即矮茎为隐性。决定隐性性状的为隐性基因,用小写字母表示,如矮茎用d表示。 (2)纯合子:遗传因子(基因)组成相同的个体。如DD或dd。其特点纯合子是自交后代全为纯合子,无性状分离现象。 杂合子:遗传因子(基因)组成不同的个体。如Dd。其特点是杂合子自交后代出现性状分离现象。 (3)杂交:遗传因子组成不同的个体之间的相交方式。 如:DD×dd Dd×dd DD×Dd等。 自交:遗传因子组成相同的个体之间的相交方式。 如:DD×DD Dd×Dd等 测交:F1(待测个体)与隐性纯合子杂交的方式。 如:Dd×dd 正交和反交:二者是相对而言的, 如甲(♀)×乙(♂)为正交,则甲(♂)×乙(♀)为反交; 如甲(♂)×乙(♀)为正交,则甲(♀)×乙(♂)为反交。 3.杂合子和纯合子的鉴别方法 若后代无性状分离,则待测个体为纯合子 测交法 若后代有性状分离,则待测个体为杂合子 若后代无性状分离,则待测个体为纯合子 自交法 若后代有性状分离,则待测个体为杂合子 4.常见问题解题方法 (1)如后代性状分离比为显:隐=3 :1,则双亲一定都是杂合子(Dd) 即Dd×Dd 3D_:1dd (2)若后代性状分离比为显:隐=1 :1,则双亲一定是测交类型。 即为Dd×dd 1Dd :1dd (3)若后代性状只有显性性状,则双亲至少有一方为显性纯合子。 即DD×DD 或 DD×Dd 或 DD×dd 5.分离定律 其实质就是在形成配子时,等位基因随减数第一次分裂后期同源染色体的分开而分离,分别进入到不同的配子中。 第2节 孟德尔豌豆杂交试验(二) 1.两对相对性状杂交试验中的有关结论 (1)两对相对性状由两对等位基因控制,且两对等位基因分别位于两对同源染色体。 (2) F1 减数分裂产生配子时,等位基因一定分离,非等位基因(位于非同源染色体上的非等位基因)自由组合,且同时发生。 (3)F2中有16种组合方式,9种基因型,4种表现型,比例9:3:3:1 YYRR 1/16 YYRr 2/16 亲本类型 双显(Y_R_) YyRR 2/16 9/16 黄圆 YyRr 4/16 纯隐(yyrr) yyrr 1/16 1/16 绿皱 YYrr 1/16 重组类型 单显(Y_rr) YYRr 2/16 3/16 黄皱 yyRR 1/16 单显(yyR_) yyRr 2/16 3/16 绿圆 注意:上述结论只是符合亲本为YYRR×yyrr,但亲本为YYrr×yyRR,F2中重组类型为 10/16 ,亲本类型为 6/16。 2.常见组合问题(自由组合定律的解题方法统一用分枝法[先一对一对分析,再进行组合]:都可以简化为用分离定理来解决,即先求一对相对性状的,最后把结果相乘,即进行组合,因此,要熟记分离定理的6种杂交结果) (1)配子类型问题 如:AaBbCc产生的配子种类数为2x2x2=8种 (2)基因型类型 如:AaBbCc×AaBBCc,后代基因型数为多少? 先分解为三个分离定律: Aa×Aa后代3种基因型(1AA:2Aa:1aa)Bb×BB后代2种基因型(1BB:1Bb)Cc×Cc后代3种基因型(1CC :2Cc:1cc) 所以其杂交后代有3x2x3=18种类型。 (3)表现类型问题 如:AaBbCc×AabbCc,后代表现数为多少? 先分解为三个分离定律: Aa×Aa后代2种表现型Bb×bb后代2种表现型Cc×Cc后代2种表现型所以其杂交后代有2x2x2=8种表现型。 3.自由组合定律 实质是形成配子时,成对的基因彼此分离,决定不同性状的基因自由组合。 4.常见遗传学符号 符号 P F1 F2 × ♀ ♂ 含义 亲本 子一代 子二代 杂交 自交 母本 父本 5.孟德尔实验成功的原因: (1)正确选用实验材料:㈠豌豆是严格自花传粉植物(闭花授粉),自然状态下一般是纯种㈡具有易于区分的性状 (2)由一对相对性状到多对相对性状的研究 (3)分析方法:统计学方法对结果进行分析 (4)实验程序:假说-演绎法 观察分析(为什么F2中出现3:1)——提出假说(4点)——演绎推理——实验验证(测交) 第二章 基因和染色体的关系 第一节 减数分裂和受精作用 知识结构: 精子的形成过程 减数分裂 卵细胞形成过程 减数分裂和受精作用 配子中染色体组合的多样性 受精作用 受精作用的过程和实质 1.正确区分染色体、染色单体、同源染色体和四分体 (1)染色体和染色单体:细胞分裂间期,染色体经过复制成由一个着丝点连着的两条姐妹染色单体。所以此时染色体数目要根据着丝点判断,即一个着丝点就代表一条染色体。 (2)同源染色体和四分体:同源染色体指形态、大小一般相同,一条来自母方,一条来自父方,且能在减数第一次分裂过程中可以两两配对的一对染色体(有丝分裂中也有同源染色体,但不联会)。四分体指减数第一次分裂同源染色体联会后每对同源染色体中含有四条姐妹染色单体。 (3)一对同源染色体= 一个四分体=2条染色体=4条染色单体=4个DNA分子。 2.减数分裂过程中遇到的一些概念 同源染色体:(上面已经有了) 联会:同源染色体两两配对的现象。四分体:(上面已经有了) 交叉互换:指四分体时期,非姐妹染色单体发生缠绕,并交换部分片段的现象。 减数分裂:是有性生殖的生物在产生成熟生殖细胞时进行的染色体数目减半的细胞分裂。 3.减数分裂 特点:复制一次, 分裂两次。 结果:染色体数目减半(染色体数目减半实际发生在减数第一次分裂,第二次分裂类似有丝分裂)。 场所:生殖器官内(动物的精巢、卵巢;植物的花药、胚珠;精巢、卵巢内既有有丝分裂,又有减数分裂) 过程: 精子的形成过程: 卵细胞的形成过程: 1个精原细胞(2n) 1个卵原细胞(2n) ↓间期:染色体复制 ↓间期:染色体复制 1个初级精母细胞(2n) 1个初级卵母细胞(2n) ↓前期:联会、四分体、交叉互换(2n) ↓前期:联会、四分体…(2n) 中期:同源染色体排列在赤道板上(2n) 中期:(2n) 后期:配对的同源染色体分离(2n) 后期:(2n) 末期:细胞质均等分裂 末期:细胞质不均等分裂(2n) 2个次级精母细胞(n) 1个次级卵母细胞+1个极体(n) ↓前期:(n) ↓前期:(n) 中期:(n) 中期:(n) 后期:染色单体分开成为两组染色体(2n) 后期:(2n) 末期:细胞质均等分离(n) 末期:(n) 4个精细胞:(n) 1个卵细胞:(n)+3个极体(n) ↓变形 4个精子(n) 4.精子与卵细胞形成的异同点 比较项目 不 同 点 相同点 精子的形成 卵细胞的形成 染色体复制 复制一次 第一次分裂 一个初级精母细胞(2n)产生两个大小相同的次级精母细胞(n) 一个初级卵母细胞(2n)(细胞质不均等分裂)产生一个次级卵母细胞(n)和一个第一极体(n) 同源染色体联会,形成四分体,同源染色体分离,非同源染色体自由组合,细胞质分裂,子细胞染色体数目减半 第二次分裂 两个次级精母细胞形成四个同样大小的精细胞(n) 一个次级卵母细胞(细胞质不均等分裂)形成一个大的卵细胞(n)和一个小的第二极体。第一极体分裂(均等)成两个第二极体 着丝点分裂,姐妹染色单体分开,分别移向两极,细胞质分裂,子细胞染色体数目不变 有无变形 精细胞变形形成精子 无变形 分裂结果 产生四个有功能的精子(n) 只产生一个有功能的卵细胞(n) 精子和卵细胞中染色体数目均减半 注:卵细胞形成无变形过程,而且是只形成一个卵细胞,卵细胞体积很大,细胞质中存有大量营养物质,为受精卵发育准备的。 5.减数分裂和有丝分裂主要异同点(要求掌握) 比较项目 减数分裂 有丝分裂 染色体复制次数及时间 一次,减数第一次分裂的间期 一次,有丝分裂的间期 细胞分裂次数 二次 一次 联会四分体是否出现 出现在减数第一次分裂 不出现 同源染色体分离 减数第一次分裂后期 无分离(有同源染色体) 着丝点分裂 发生在减数第二次分裂后期 后期 子细胞的名称及数目 性细胞,精细胞4个或卵1个、极体3个 体细胞,2个 子细胞中染色体变化 减半,减数第一次分裂 不变 子细胞间的遗传组成 不一定相同 一定相同 6. 有丝分裂和减数分裂的图形的鉴别:(检索表以二倍体生物为例) 1.1细胞中没有同源染色体……减数第二次分裂 1.2细胞中有同源染色体 2.1有同源染色体联会、形成四分体排列于赤道板或相互分离……减数第一次分裂 例题:判断下列各细胞分裂图属何种分裂何时期图。 [解析]: 甲图细胞的每一端均有成对的同源染色体,但无联会、四分体、分离等行为,且每一端都有一套形态和数目相同的染色体,故为有丝分裂的后期。 乙图有同源染色体,且同源染色体分离,非同源染色体自由组合,故为减数第一次分裂的后期。 丙图不存在同源染色体,且每条染色体的着丝点分开,姐妹染色单体成为染色体移向细胞两极,故为减数第二次分裂后期。 7.受精作用:指卵细胞和精子相互识别、融合成为受精卵的过程。 意义:通过减数分裂和受精作用,保证了进行有性生殖的生物前后代体细胞中染色体数目的恒定,从而保证了遗传的稳定和物种的稳定;在减数分裂中,发生了非同源染色体的自由组合和非姐妹染色单体的交叉互换,增加了配子的多样性,加上受精时卵细胞和精子结合的随机性,使后代呈现多样性,有利于生物的进化,体现了有性生殖的优越性。 8.配子种类问题 由于染色体组合的多样性,使配子也多种多样,根据染色体组合多样性的形成的过程,所以配子的种类可由同源染色体对数决定,即含有n对同源染色体的精(卵)原细胞产生配子的种类为2n种。 第二节 基因在染色体上 1. 萨顿假说推论:基因在染色体上,也就是说染色体是基因的载体。因为基因和染色体行为存在着明显的平行关系。 研究方法:类比推理 2. 基因位于染色体上的实验证据 果蝇杂交实验分析 摩尔根果蝇眼色的实验:(A—红眼基因 a—白眼基因 X、Y——果蝇的性染色体) P:红眼(雌) × 白眼(雄) P: XAXA × XaY ↓ ↓ F1: 红眼 F1 : XAXa × XAY ↓F1雌雄交配 ↓ F2:红眼(雌雄) 白眼(雄) F2: XAXA XAXa XAY XaY 3.一条染色体上一般含有多个基因,且这多个基因在染色体上呈线性排列 4. 基因的分离定律的实质 基因的自由组合定律的实质 萨顿假说 1.内容:基因在染色体上 (染色体是基因的载体) 2.依据:基因与染色体行为存在着明显的平行关系。 ①在杂交中保持完整和独立性 ②成对存在 ③一个来自父方,一个来自母方 ④形成配子时自由组合 3.证据: 果蝇的限性遗传 红眼 XWXW X 白眼XwY XW Y 红眼 XWXw 红眼XWXW :红眼XWXw:红眼XW Y:白眼XwY ①一条染色体上有许多个基因;②基因在染色体上呈线性排列。 4.现代解释孟德尔遗传定律 ①分离定律:等位基因随同源染色体的分开独立地遗传给后代。 ②自由组合定律:非同源染色体上的非等位基因自由组合。 口诀:无中生有为隐性,隐性遗传看女病。父子患病为伴性。 有中生无为显性,显性遗传看男病。 母女患病为伴性。 三、伴性遗传的特点与判断 遗传病的遗传方式 遗传特点 实例 常染色体隐性遗传病 隔代遗传,患者为隐性纯合体 白化病、苯丙酮尿症、 常染色体显性遗传病 代代相传,正常人为隐性纯合体 多/并指、软骨发育不全 伴X染色体隐性遗传病 隔代遗传,交叉遗传,患者男性多于女性 色盲、血友病 伴X染色体显性遗传病 代代相传,交叉遗传,患者女性多于男性 抗VD佝偻病 伴Y染色体遗传病 传男不传女,只有男性患者没有女性患者 人类中的毛耳 第三节 伴性遗传 1.伴性(别)遗传的概念:此类性状的遗传控制基因位于性染色体上,因而总是与性别相关联。 1. 人类红绿色盲症(伴X染色体隐性遗传病) ①致病基因Xa 正常基因:XA ②患者:男性XaY 女性XaXa 正常:男性XAY 女性 XAXA XAXa(携带者) ③遗传特点: ⑴男性患者多于女性患者。⑵交叉遗传。即男性(父亲)→女性(女儿携带者)→男性(儿子)。⑶一般为隔代遗传。 2. 抗维生素D佝偻病(伴X染色体显性遗传病) ①致病基因XA 正常基因:Xa ②患者:男性XAY 女性XAXA XAXa 正常:男性XaY 女性XaXa ③遗传特点: ⑴女性患者多于男性患者。⑵代代相传。⑶交叉遗传现象:男性→女性→男性 4.Y染色体遗传:人类毛耳现象 遗传特点:基因位于Y染色体上,仅在男性个体中遗传 5、伴性遗传在生产实践中的应用:根据毛色辨别小鸡的雌、雄 6、人类遗传病的判定方法 口诀:无中生有必为隐,生女有病为常隐;有中生无必为显,生女有病为常显。 解释:父母无病,子女有病——隐性遗传(无中生有)父母无病,女儿有病——常、隐性遗传;父母有病,子女无病——显性遗传(有中生无)父母有病,女儿无病——常、显性遗传 注:如果家系图中患者全为男性(女全正常),且具有世代连续性,应首先考虑伴Y遗传,无显隐之分。 第三章 基因的本质 第一节 DNA是主要的遗传物质 1.肺炎双球菌的转化实验 (1)体内转化实验:1928年由英国科学家格里菲思等人进行。 实验材料:S型细菌、R型细菌 菌落 菌体 毒性 S型细菌 表面光滑(smooth) 有荚膜(小鼠很难消灭) →有 R型细菌 表面粗糙(rough) 无荚膜(小鼠容易消灭) →无 结论:在S型细菌中存在转化因子可以使R型细菌转化为S型细菌。 (2)、体外转化实验:1944年由美国科学家艾弗里等人进行。 结论:DNA是遗传物质 2.噬菌体侵染细菌的实验 1、实验过程 ①标记噬菌体(35S标记蛋白质,32P标记DNA,不能同时标记) 含35S的培养基含35S的细菌35S蛋白质外壳含35S的噬菌体 含32P的培养基含32P的细菌内部DNA含32P的噬菌体 ②噬菌体侵染细菌 含35S的噬菌体细菌体内没有放射性35S 含32P的噬菌体细菌体内有放射线32P 结果分析:测试结果表明:侵染过程中,只有32P进入细菌,而35S未进入,说明只有亲代噬菌体的 DNA 进入细胞。子代噬菌体的各种性状,是通过亲代的 DNA 遗传的。 DNA 才是真正的遗传物质。 结论:进一步确立DNA是遗传物质 3.烟草花叶病毒感染烟草实验: (1)、实验过程 (2)、实验结果分析与结论 烟草花叶病毒的RNA能自我复制,控制生物的遗传性状,因此RNA是它的遗传物质(还有HIV)。 4、生物的遗传物质 非细胞结构:DNA或RNA 生物 原核生物:DNA 细胞结构 真核生物:DNA 结论:绝大多数生物(细胞结构的生物(同时含DAN、RNA)和DNA病毒)的遗传物质是DNA,所以说DNA是主要的遗传物质。 第二节 DNA分子的结构 1. DNA分子的结构 (1) 基本单位---脱氧核糖核苷酸(简称脱氧核苷酸) 2、DNA分子有何特点? ⑴稳定性:是指DNA分子双螺旋空间结构的相对稳定性。 ⑵多样性:构成DNA分子的脱氧核苷酸虽只有4种,配对方式仅2种,但其数目却可以成千上万,更重要的是形成碱基对的排列顺序可以千变万化,从而决定了DNA分子的多样性(n对碱基可形成4n种)。 ⑶特异性:每个特定的DNA分子中具有特定的碱基排列顺序,而特定的排列顺序代表着遗传信息,所以每个特定的DNA分子中都贮存着特定的遗传信息,这种特定的碱基排列顺序就决定了DNA分子的特异性。 3、DNA双螺旋结构的特点: ⑴DNA分子由两条反向平行的脱氧核苷酸长链盘旋而成。 ⑵DNA分子外侧是脱氧核糖和磷酸交替连接而成的基本骨架。 ⑶DNA分子两条链的内侧的碱基按照碱基互补配对原则配对,并以氢键互相连接。 4、相关计算(画图标已知,用好100,碱基互补配对出答案) (文科生了解) (1)A=T C=G(2)(A+ C )/ (T+G )= 1或A+G / T+C = 1 (3)如果(A1+C1 ) / ( T1+G1 )=b 那么(A2+C2 ) / (T2+G2 ) =1/b (4) (A+ T ) / ( C +G ) =(A1+ T1 ) / ( C1 +G1 ) = ( A2 + T2 ) / ( C2+G2 ) = a 4.判断核酸种类 (1)如有U无T,则此核酸为RNA;(2)如有T且A=T C=G,则为双链DNA; (3)如有T且A≠ T C≠ G,则为单链DNA ;(4)U和T都有,则处于转录阶段。 第3节 DNA的复制 一、DNA分子复制的过程 1、概念:以亲代DNA分子为模板合成子代DNA的过程 2、复制时间:有丝分裂或减数第一次分裂间期 3. 复制方式:半保留复制 4、复制条件 (1)模板:亲代DNA分子两条脱氧核苷酸链 (2)原料:4种脱氧核苷酸 (3)能量:ATP (4)解旋酶、 DNA聚合酶等 5、复制特点:边解旋边复制 6、复制场所:主要在细胞核中,线粒体和叶绿体也存在。 7、复制意义:保持了遗传信息的连续性。 三、与DNA复制有关的碱基计算(文科生了解) 1.一个DNA连续复制n次后,DNA分子总数为:2n 2.第n代的DNA分子中,含原DNA母链的有2个,占1/(2n-1) 3.若某DNA分子中含碱基T为a, (1)则连续复制n次,所需游离的胸腺嘧啶脱氧核苷酸数为:a(2n-1) (2)第n次复制时所需游离的胸腺嘧啶脱氧核苷酸数为:a·2n-1 第4节 基因是有遗传效应的DNA片段 一、.基因的相关关系 1、与DNA的关系 ①基因的实质是有遗传效应的DNA片段,无遗传效应的DNA片段不能称之为基因(非基因)。 ②每个DNA分子包含许多个基因。 2、与染色体的关系 ①基因在染色体上呈线性排列。②染色体是基因的主要载体,此外,线粒体和叶绿体中也有基因分布。 3、与脱氧核苷酸的关系 ①脱氧核苷酸(A、T、C、G)是构成基因的单位。②基因中脱氧核苷酸的排列顺序代表遗传信息。 4、与性状的关系 ①基因是控制生物性状的遗传物质的结构和功能单位。 ②基因对性状的控制通过控制蛋白质分子(酶、结构蛋白)的合成来实现。 二、DNA片段中的遗传信息 遗传信息蕴藏在4种碱基的排列顺序之中;碱基排列顺序的千变万化构成了DNA分子的 多样性,而碱基的特异排列顺序,又构成了每个DNA分子的特异性。 第四章 基因的表达 第一节 基因指导蛋白质的合成 一、遗传信息的转录 1、DNA与RNA的异同点 核酸 项目 DNA RNA 结构 通常是双螺旋结构,极少数病毒是单链结构 通常是单链结构 基本单位 脱氧核苷酸(4种) 核糖核苷酸(4种) 五碳糖 脱氧核糖 核糖 碱基 A、G、C、T A、G、C、U 产生途径 DNA复制、逆转录 转录、RNA复制 存在部位 主要位于细胞核中染色体上,极少数位于细胞质中的线粒体和叶绿体上 主要位于细胞质中 功能 传递和表达遗传信息 ①mRNA:转录遗传信息,翻译的模板 ②tRNA:运输特定氨基酸 ③rRNA:核糖体的组成成分 细胞生物(如人、水稻)内含:2种核酸、5种碱基、8种核苷酸 病毒含:1种核酸、4种碱基、5种核苷酸 2、RNA的类型 ⑴信使RNA(mRNA)⑵转运RNA(tRNA)⑶核糖体RNA(rRNA) 3、转录 ⑴转录的概念:以DNA的一条链为模板通过碱基互补配对原则形成信使RNA的过程。 ⑵转录的场所 主要在细胞核⑶转录的模板 以DNA的一条链为模板 ⑷转录的原料 4种核糖核苷酸⑸转录的产物 一条单链的mRNA ⑹转录的原则 碱基互补配对⑺转录与复制的异同(下表) 阶段 项目 复制 转录 时间 细胞有丝分裂的间期或减数第一次分裂间期 生长发育的连续过程 进行场所 主要细胞核 主要细胞核 模板 以DNA的两条链为模板 以DNA的一条链为模板 原料 4种脱氧核苷酸 4种核糖核苷酸 条件 需要特定的酶和ATP 需要特定的酶和ATP 过程 在酶的作用下,两条扭成螺旋的双链解开,以解开的每段链为模板,按碱基互补配对原则(A—T、C—G、T—A、G—C)合成与模板互补的子链;子链与对应的母链盘绕成双螺旋结构 在细胞核中,以DNA解旋后的一条链为模板,按照A—U、G—C、T—A、C—G的碱基互补配对原则,形成mRNA,mRNA从细胞核进入细胞质中,与核糖体结合 产物 两个双链的DNA分子 一条单链的mRNA 特点 边解旋边复制;半保留式复制(每个子代DNA含一条母链和一条子链) 边解旋边转录;DNA双链分子全保留式转录(转录后DNA仍保留原来的双链结构);只转录部分基因 遗传信息的传递方向 遗传信息从亲代DNA传给子代DNA分子 遗传信息由DNA传到RNA 二、遗传信息的翻译 1、遗传信息、密码子和反密码子 遗传信息 密码子 反密码子 概念 基因中脱氧核苷酸的排列顺序 mRNA中决定一个氨基酸的三个相邻碱基 tRNA中与mRNA密码子互补配对的三个碱基 作用 控制生物的遗传性状 直接决定蛋白质中的氨基酸序列 识别密码子,转运氨基酸 种类 基因中脱氧核苷酸种类、数目和排列顺序的不同,决定了遗传信息的多样性 64种 61种:能翻译出氨基酸 3种:终止密码子,不能翻译氨基酸 61种或tRNA也为61种 联系 ①基因中脱氧核苷酸的序列mRNA中核糖核苷酸的序列 ②mRNA中碱基序列与基因模板链中碱基序列互补 ③密码子与相应反密码子的序列互补配对 2、翻译 ⑴定义:在核糖体中以信使RNA为模板,以转运RNA为运载工具合成具有一定氨基酸排列顺序的蛋白质分子。⑵翻译的场所 细胞质的核糖体上 ⑶翻译的模板 mRNA ⑷翻译的原料 20种氨基酸 ⑸翻译的产物 多肽链(蛋白质 ) ⑹翻译的原则 碱基互补配对 ⑺翻译与转录的异同点(下表): 阶段 项目 转录 翻译 定义 在细胞核中,以DNA的一条链为模板合成mRNA的过程 以信使RNA为模板,合成具有一定氨基酸顺序的蛋白质的过程 场所 细胞核 细胞质的核糖体 模板 DNA的一条链 信使RNA 信息传递的方向 DNA→mRNA mRNA→蛋白质 原料 含A、U、C、G的4种核苷酸 合成蛋白质的20种氨基酸 产物 信使RNA 有一定氨基酸排列顺序的蛋白质 实质 是遗传信息的转录 是遗传信息的表达 三、基因表达过程中有关DNA、RNA、氨基酸的计算 1、转录时,以基因的一条链为模板,按照碱基互补配对原则,产生一条单链mRNA,则转录产生的mRNA分子中碱基数目是基因中碱基数目的一半,且基因模板链中A+T(或C+G)与mRNA分子中U+A(或C+G)相等。 2.翻译过程中,mRNA中每3个相邻碱基决定一个氨基酸,所以经翻译合成的蛋白质分子中氨基酸数目是mRNA中碱基数目的1/3,是双链DNA碱基数目的 1/6 。 第2节 基因对性状的控制 一、中心法则:最先是由克里克命名,指的是遗传信息传递的一般规律。 ⑴DNA→DNA:DNA的自我复制; ⑵DNA→RNA:转录; ⑶RNA→蛋白质:翻译; ⑷RNA→RNA:RNA的自我复制; ⑸RNA→DNA:逆转录。 DNA→DNA RNA→RNA DNA→RNA 细胞生物 病毒 RNA→蛋白质 RNA→DNA 二、基因、蛋白质与性状的关系 1、 (间接控制) 酶或激素 细胞代谢 基因 性状 结构蛋白 细胞结构 (直接控制) 2、基因型与表现型的关系,基因的表达过程中或表达后的蛋白质也可能受到环境因素的影响。 3、生物体性状的多基因因素:基因与基因、基因与基因产物、基因与环境之间多种因素存在复杂的相互作用,共同地精细地调控生物的性状。 基因、蛋白质和性状的关系 (1)基因通过控制酶的合成来控制代谢过程,进而控制生物体的性状,如白化病等。 (2)基因还能通过控制蛋白质的结构直接控制生物体的性状,如镰刀型细胞贫血等。 第五章 基因突变及其他变异 第一节 基因突变和基因重组 一、基因突变的实例 1、镰刀型细胞贫血症 ⑴症状 红细胞由正常的圆饼状变成镰刀型,导致红细胞不能顺利通过毛细血管聚集在一起,红细胞破裂(溶血),造成贫血。⑵病因 基因中的碱基替换 直接原因:血红蛋白分子结构的改变 根本原因:控制血红蛋白分子合成的基因结构的改变 2、基因突变 概念:DNA分子中发生碱基对的替换、增添和缺失,而引起的基因结构的改变 二、基因突变的原因和特点 1、基因突变的原因 有内因和外因 物理因素:如紫外线、X射线 ⑴诱发突变(外因) 化学因素:如亚硝酸、碱基类似物 生物因素:如某些病毒 ⑵自然突变(内因) 2、基因突变的特点 ⑴普遍性⑵随机性⑶不定向性⑷低频性⑸多害少利性 3、基因突变的时间 有丝分裂或减数第一次分裂间期 4.基因突变的意义:是新基因产生的途径;生物变异的根本来源;是进化的原始材料 三、基因重组 1、基因重组的概念 随机重组(减数第一次分裂后期) 2、基因重组的类型 交换重组(四分体时期) 3. 时间:减数第一次分裂过程中(减数第一次分裂后期和四分体时期) 4.基因重组的意义 四、基因突变与基因重组的区别 基因突变 基因重组 本质 基因的分子结构发生改变,产生了新基因,也可以产生新基因型,出现了新的性状。 不同基因的重新组合,不产生新基因,而是产生新的基因型,使不同性状重新组合。 发生时间及原因 细胞分裂间期DNA分子复制时,由于外界理化因素引起的碱基对的替换、增添或缺失。 减数第一次分裂后期中,随着同源染色体的分开,位于非同源染色体上的非等位基因进行了自由组合;四分体时期非姐妹染色单体的交叉互换。 条件 外界环境条件的变化和内部因素的相互作用。 有性生殖过程中进行减数分裂形成生殖细胞。 意义 生物变异的根本来源,是生物进化的原材料。 生物变异的来源之一,是形成生物多样性的重要原因。 发生可能 突变频率低,但普遍存在。 有性生殖中非常普遍。 第二节 染色体变异 一、染色体结构的变异(猫叫综合征,不是猫叫综合症) 1、 概念 缺失 2、变异类型 重复 倒位 易位 二、染色体数目的变异 1.染色体组的概念: 细胞中的一组非同源染色体,在形态和功能上各不相同,携带着控制生物发育的全部遗传信息,这样的一组染色体,叫染色体组。(文科生了解) 染色体组特点:a、一个染色体组中不含同源染色体 b、一个染色体组中所含的染色体形态、大小和功能各不相同 c、一个染色体组中含有控制生物性状的一整套基因 图一含4组染色体(或有4个染色体组),每组3条染色体;图二含4组染色体(或有4个染色体组),每组2条染色体 2.常见的一些关于单倍体与多倍体的问题 ⑴一倍体一定是单倍体吗?单倍体一定是一倍体吗?(一倍体一定是单倍体;单倍体不一定是一倍体。) ⑵二倍体物种所形成的单倍体中,其体细胞中只含有一个染色体组,这种说法对吗?为什么? (答:对,因为在体细胞进行减数分裂形成配子时,同源染色体分开, 导致染色体数目减半。) ⑶如果是四倍体、六倍体物种形成的单倍体,其体细胞中就含有两个或三个染色体组,我们可以称它为二倍体或三倍体,这种说法对吗? (答:不对,尽管其体细胞中含有两个或三个染色体组,但因为是正常的体细胞的配子所形成的物种,因此,只能称为单倍体。) ①由受精卵发育来的个体,细胞中含有几个染色体组,就叫几倍体; ②而由配子直接发育来的,不管含有几个染色组,都只能叫单倍体 。 (4)单倍体中可以只有一个染色体组,但也可以有多个染色体组,对吗? (答:对,如果本物种是二倍体,则其配子所形成的单倍体中含有一个染色体组;如果本物种是四倍体,则其配子所形成的单倍体含有两个或两个以上的染色体组。) 3.多倍体育种 ①人工诱导多倍体的方法:用秋水仙素处理萌发的种子和幼苗。原理:当秋水仙素作用于正在分裂的细胞时,能够抑制细胞分裂前期纺锤体形成,导致染色体不分离,从而引起细胞内染色体数目加倍) ②多倍体植株特征:茎杆粗壮,叶片、果实和种子都比较大,糖类和蛋白质等营养物质的含量都有所增加。③过程: 4.单倍体育种 ① 单倍体植株特征:植株长得弱小而且高度不育。 ② 单倍体植株获得方法:花药离休培养。 ③ 单倍体育种的意义:明显缩短育种年限(只需二年)。 ④ 过程: 列表比较多倍体育种和单倍体育种: 多倍体育种 单倍体育种 原理 染色体组成倍增加 染色体组成倍减少,再加倍后得到纯种 (指每对染色体上成对的基因都是纯合的) 常用方法 秋水仙素处理萌发的种子、幼苗 花药的离体培养后,人工诱导染色体加倍 优点 器官大,提高产量和营养成分 明显缩短育种年限 缺点 适用于植物,在动物方面难以开展 技术复杂一些,须与杂交育种配合 4.三倍体无子西瓜的培育过程图示:注:亲本中要用四倍体植株作为母本, 二倍体作为父本,两次使用二倍体花粉的作用是不同的。(了解) 以染色体概念系统为例,分析染色体与遗传变异进化之间的内在联 第三节 人类遗传病 1、概念:通常是指由于遗传物质改变而引起的人类疾病,主要可以分为单基因遗传病,多基因遗传病和染色体异常遗传病三大类。(一定要记住各种遗传病类型的实例) 显性遗传病:并指、多指 常染色体 单基因 隐性遗传病:白化病、苯丙酮尿症、侏儒症 遗传病 显性:抗维生素D佝偻病 X 性染色体 隐性:红绿色盲、血友病、(进行肌营养不良) 人类遗 Y 外耳道多毛症(只有男性患者) 传病 多基因遗传病:原发性高血压、冠心病、青少年型糖尿病 数目异常 原因 染色体异 结构异常 常遗传病: 常染色体:21三体综合症、猫叫综合症 类型 性染色体:性腺发育不良(如:特纳氏综合症) 2、特点: a、致病基因来自父母,因此其在胎儿的时候就已经表现出症状或处在潜在状态。 b、往往是终生具有的c、常带有家族性,并以一定的比例出现于各成员中。 3、危害:a、危害人体健康b、贻害子孙后代c、增加了社会负担 4、人类基因组计划是测定人类基因组的全部DNA序列,解读其中包含的遗传信息。中、美、德、英、法、日参加了这项工作。 第6章 从杂交育种到基因工程 第1节 杂交育种与诱变育种 一、杂交育种 1.概念:是将两个或多个品种的优良性状通过交配集中一起,再经过选择和培育,获得新品种的方法。 2.原理:基因重组。通过基因重组产生新的基因型,从而产生新的优良性状。 3.优点:可以将两个或多个优良性状集中在一起。 4.缺点:不会产生新基因,且杂交后代会出现性状分离,育种过程缓慢,过程复杂。 二、诱变育种 1.概念:指利用物理或化学因素来处理生物,使生物产生基因突变,利用这些变异育成新品种的方法。 2.诱变原理:基因突变 3.诱变因素: (1)物理:X射线,紫外线,γ射线 (2)化学:亚硝酸,硫酸二乙酯等。 4.优点:可以在较短时间内获得更多的优良性状。 5.缺点:因为基因突变具有不定向性且有利的突变很少,所以诱变育种具有一定盲目性,所以利用理化因素出来生物提高突变率,且需要处理大量的生物材料,再进行选择培育。 三、四种育种方法的比较 杂交育种 诱变育种 多倍体育种 单倍体育种 原理 基因重组 基因突变 染色体变异 染色体变异 方法 杂交 激光、射线或化学药品处理 秋水仙素处理萌发种子或幼苗 花药离体培养后加倍 优点 可集中优良性状 时间短 器官大和营养物质含量高 缩短育种年限 缺点 育种年限长 盲目性及突变频率较低 动物中难以开展 成活率低,只适用 于植物 举例 高杆抗病与矮杆感病杂交获得矮杆抗病品种 高产青霉菌株的育成 三倍体西瓜 抗病植株的育成 第二节 基因工程及其应用 1. 概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 2. 原理 基因重组 4.工具: A.基因的“剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。B.基因的“针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的“运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、 具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 5.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞 常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。6.转基因生物和转基因食品的安全性 7.图示几种不同育种方法 甲 A. 乙 B. 新性状 C. AABBDD × RR ABDR AABBDDRR 普通小麦 黑麦 不育杂种 小黑麦 DDTT × ddtt F1 F2 能稳定遗传的 D. 高秆 矮秆 矮秆抗锈病的品种 抗锈病 易染锈病 DDTT × ddtt F1 配子 幼苗 能稳定遗传的 E. 高秆 矮秆 矮秆抗锈病的品种 抗锈病 易染锈病 F. 其它生物基因 植物细胞 新细胞 具有新性状的植物体 ① A:克隆 B:诱变育种 C:多倍体育种 D:杂交育种 E:单倍体育种 F:基因工程 第7章 现代生物进化理论 第1节 现代生物进化理论的由来 一、拉马克的进化学说 1、拉马克的进化学说的主要内容——用进废退、获得性遗传 (1)、生物都不是神创的,而是由更古老的生物进化来的。这对当时人们普遍信奉的神创造成一定冲击,因此具有进步意义。 (2)、生物是由低等到高等逐渐进化的。 (3)、对于生物进化的原因,他认为:一是“用进废退”的法则;二是“获得性遗传”的法则。但这些法则缺乏事实依据,大多来自于主观推测。 2、拉马克的进化学说的历史意义 二、达尔文自然选择学说 (一)、达尔文自然选择学说的主要内容 1.过度(不是过渡)繁殖 —— 选择的基础 生物体普遍具有很强的繁殖能力,能产生很多后代,不同个体间有一定的差异。 2.生存斗争 —— 进化的动力、外因、条件 大量的个体由于资源空间的限制而进行生存斗争。在生存斗争中大量个体死亡,只有少数的个体生存下来。生存斗争包括三方面: (1)生物与无机环境的斗争(2)种内斗争(3)种间斗争 生存斗争对某些个体的生存不利,但对物种的生存是有利的,并推动生物的进化。 3.遗传变异 ——进化的内因 在生物繁殖的过程中普遍存在着遗传变异现象,生物的变异是不定向的,有的变异是有利的,有的是不利的,其中具有有利变异的个体就容易在生存斗争中获胜生存下去,反之,具有不利变异个体就容易被淘汰。 4.适者生存 —— 选择的结果 适者生存,不适者被淘汰是自然选择的结果。自然选择只选择适应环境的变异类型,通过多次选择,使生物的微小有利变异通过繁殖遗产给后代,得以积累和加强,使生物更好的适应环境,逐渐产生了新类型。 所以说变异不是定向的,但自然选择是定向的,决定着进化的方向。 (二)、达尔文的自然选择学说的历史局限性和意义 1、 意义:自然选择学说能够科学地解释生物进化原因以及生物的多样性和适应性。 2、 不足:对遗传和变异本质,不能做出科学的解释。对生物进化的解释局限在个体水平。 第2节 现代生物进化理论的主要内容 一、种群基因频率的改变与生物进化 (一)种群是生物进化的基本单位 1、种群:生活在一定区域的同种生物的全部个体叫种群。 种群特点:种群中的个体不是机械的集合在一起,而是通过种内关系组成一个有机的整体,个体间可以彼此交配,并通过繁殖将各自的基因传递给后代。 2、基因库 3、基因频率、基因型频率及其相关计算 基因频率= 基因型频率= 两者联系:(1)种群中一对等位基因的频率之和等于1,基因型频率之和也等于1。 (2)一个等位基因的频率=该等位基因纯合子的频率+杂合子的频率。 (二)突变和基因重组产生进化的原材料 可遗传的变异:基因突变、染色体变异、基因重组 突变包括基因突变和染色体变异 突变的有害或有利不是绝对的,取决于生物的生存环境 (三)自然选择决定生物进化的方向 生物进化的实质是基因频率的改变 二、隔离与物种的形成 (一)、物种的概念 1、物种的概念:同种生物在自然状态下能够相互交配,并能产生可育后代。 地理隔离 量变 2、隔离 生殖隔离 质变 注:一个物种的形成必须要经过生殖隔离,但不一定经过地理隔离,如多倍体的产生。 (二)、种群与物种的区别与联系 种群 物种 概念 生活在一定区域的同种生物的全部个体 能够在自然状况下相互交配并且产生可育后代的一群生物 范围 较小范围内的同种生物的个体 分布在不同区域内的同种生物的许多种群组成 判断标准 种群必须具备“三同”;即同一时间、同一地点、同一物种 主要是形态特征和能否自由交配并产生可育后代 联系 一个物种可以包括许多种群,同一个物种的多个种群之间存在着地理隔离,长期发展下去可成为不同亚种,进而可能形成多个新种。 三、小结 1.新物种形成过程:地理隔离→阻断基因交流→不同的突变、基因重组和选择→基因频率向不同方向改变→种群基因库出现差异→差异加大→生殖隔离→新物种形成 2.现代生物进化理论的基本观点: ⑴种群是生物进化的基本单位,生物进化的实质在于种群基因频率的改变。突变和基因重组、自然选择及隔离是物种形成过程的三个基本环节,通过它们的综合作用,种群产生分化,最终导致新物种的形成。 ⑵突变和基因重组产生生物进化的原材料,自然选择使种群的基因频率定向改变并决定生物进化的方向,隔离是新物种形成的必要条件(生殖隔离的形成标志着新物种的形成)。 ⑶现代生物进化理论的基础:自然选择学说。 3.物种形成与生物进化的区别:生物进化是指同种生物的发展变化,时间可长可短,性状变化程度不一,任何基因频率的改变,不论其变化大小如何,都属进化的范围(量变),物种的形成必须是当基因频率的改变在突破种的界限形成生殖隔离时(质变),方可成立。 三、共同进化与生物多样性的形成 (一)、共同进化 1、概念:不同物种之间、生物与无机环境之间在相互影响中不断进化和发展 不同物种间的共同进化 2、含义 生物与无机环境之间的相互影响和共同演变 (二)、生物多样性的形成 基因多样性 1、生物多样化的内容 物种多样性 生态系统多样性 2、生物多样性形成的进化历程 (1)关键点:(文科生了解) 真核生物出现后有性生殖方式的出现,生物进化速度明显加快; 寒武纪大爆发:形成生态系统的第三极(消费者),对植物的进化产生影响; 原始两栖类的出现:生物登陆改变着环境,陆地上复杂的环境为生物的进化提供了条件。 (2)进化顺序 简单 复杂 水生 陆生 低等 高等 异样 自养 厌氧 需氧 无性 有性 单细胞 多细胞 细胞内消化 细胞外消化 三、生物进化理论在发展 现代生物进化理论核心是自然选择学说 从亚显微结构水平到分子水平 细胞核→染色体→DNA→基因→遗传信息→mRNA→蛋白质(性状) 简要论述染色体、DNA、基因、遗传信息、遗传密码、蛋白质(性状)和生物多样性之间的关系。 染色体由DNA和蛋白质组成,是DNA的主要载体,而不是全部载体,因其还存在于真核细胞的叶绿体和线粒体,原核生物和病毒中的DNA不位于染色体上,DNA是染色体的主要组成成分。 DNA分子上具有遗传效应的、控制生物性状的片段叫基因,DNA分子也存在没有遗传效应的片段叫基因间区,DNA上有成百上千个基因。基因位于DNA分子上,也位于染色体上,并在染色体上呈线性排列,占据一定的“座位”(位点),在减数分裂和有丝分裂过程中,随染色体的移动而移动,减数分裂过程中染色体互换,同源染色体的分离,非同源染色体自由组合是基因的三个遗传规律和伴性遗传的细胞学基础。 DNA分子基因上的脱氧核苷酸的排列顺序叫遗传信息,并不是DNA分子上所有脱氧核苷酸的排列顺序叫遗传信息(基因间区不含有遗传信息),基因所在的DNA片段有两条链,只有一条链携带遗传信息叫有义链,另一条配对链叫无义链,DNA双链中的一条链对某个基因来说是有义链,而对另一个基因来说,可能是无义链。 遗传密码是指在DNA的转录过程中,以DNA(基因)上一条有义链(携带遗传信息)为模板,按照碱基互补配对原则(A—U,G—C)形成的信使RNA单链上的碱基排列顺序,遗传学上把信使RNA上决定一个氨基酸的三个相邻的碱基叫“密码子”,也叫“三联体密码子”,和遗传密码的含义是一致的,应当注意,20种氨基酸密码表中每个氨基酸所对应三个字母的碱基排序是指定位在信使RNA上的,并不是位于DNA或转运RNA(叫反密码子)上碱基排列顺序。 性状是指一个生物的任何可以鉴别的形态或生理特征,是遗传和环境相互作用的结果,主要由蛋白质体现出来。生物的性状受基因控制,是基因通过控制蛋白质的合成来体现的。 DNA分子中碱基的排列顺序千变万化,一个DNA分子中的一条多核苷酸链有100个四种不同的碱基,它们的可能排列方式是4100种。而事实上DNA分子中碱基数量是成千上万,其可能的排列方式几乎是无限的。DNA分子的多样性,可以从分子水平上说明生物的多样性和个体之间的差异的原因。 必修3 稳态与环境知识点 第一章:人体的内环境与稳态 1、体液:体内含有的大量以水为基础的物体。 细胞内液(2/3) 体液 细胞外液(1/3):包括:血浆、淋巴、组织液等 血浆 2、体液之间关系: 细胞内液 组织液 淋巴 3、内环境:由细胞外液构成的液体环境。 内环境作用:是细胞与外界环境进行物质交换的媒介。 4、组织液、淋巴的成分和含量与血浆的相近,但又不完全相同,最主要的差 别在于血浆中含有较多的蛋白质,而组织液和淋巴中蛋白质含量较少 5、细胞外液的理化性质:渗透压、酸碱度、温度。 6、血浆中酸碱度:7.35---7.45 调节的试剂: 缓冲溶液: NaHCO3/H2CO3 Na2HPO4/ NaH2PO4 7、人体细胞外液正常的渗透压:770kPa、正常的温度:37度 8、稳态:正常机体通过调节作用,使各个器官、系统协调活动、共同维持内 环境的相对稳定的状态。 内环境稳态指的是内环境的成分和理化性质都处于动态平衡中 9、稳态的调节:神经 体液 免疫共同调节 内环境稳态的意义:内环境稳态是机体进行正常生命活动的必要条件。 第二章;动物和人体生命活动的调节 1、神经调节的基本方式:反射 神经调节的结构基础:反射弧 反射弧:感受器→传入神经(有神经节)→神经中枢→传出神经→效应器(还包括肌肉和腺体) 神经纤维上 双向传导 静息时外正内负 静息电位 → 刺激 → 动作电位→ 电位差→局部电流 2、兴奋传导 神经元之间(突触传导) 单向传导 突触小泡(递质)→ 突触前膜→突触间隙→ 突触后膜(有受体)→产生兴奋或抑制 3、人体的神经中枢: 下丘脑:体温调节中枢、水平衡调节中枢、 生物的节律行为 脑干:呼吸中枢 小脑:维持身体平衡的作用 大脑:调节机体活动的最高级中枢 脊髓:调节机体活动的低级中枢 4、大脑的高级功能:除了对外界的感知及控制机体的反射活动外, 还具有语言、学习、记忆、和思维等方面的高级功能。 大脑S(sport))区受损会得运动性失语症:患者可以看懂文字、听懂别人说话、但自己不会讲话 5、激素调节:由内分泌器官(或细胞)分泌的化学物质进行调节 激素调节是体液调节的主要内容,体液调节还有CO2的调节 6、人体正常血糖浓度;0.8—1.2g/L 低于0.8 g/L:低血糖症 高于1.2 g/L;高血糖症、严重时出现糖尿病。 7、人体血糖的三个来源:食物、肝糖原的分解、非糖物质的转化 三个去处:氧化分解、合成肝糖原肌糖原、转化成脂肪蛋白质等 8、血糖平衡的调节 9、体温调节 寒冷刺激 下丘脑 促甲状腺激素释放激素 垂体→促甲状腺激素 甲状腺 甲状腺激素 促进细胞的新陈代谢 甲状腺激素分泌过多又会反过来抑制下丘脑和垂体的作用,这就是反馈调节(生态系统中也存在)。 人体寒冷时机体也会发生变化;全身发抖(骨骼肌手缩)、起鸡皮疙的(毛细血管收缩) 10、激素调节的特点:微量和高效、通过体液运输(人体各个部位)、作用于靶器官或靶细胞11、神经调节与体液调节的区别 比较项目 神经调节 体液调节 作用途径 反射弧 体液运输 反应速度 迅速 较缓慢 作用范围 准确、比较局限 较广泛 作用时间 短暂 比较长 12、水盐平衡调节 饮水不足 失水过多 食物过咸 ↓ 细胞外液渗透压升高 细胞外液渗透压下降 细胞外液渗透压下降 (-) ↓(﹢) (-) 下丘脑中的渗透压感受器 大脑皮层 ↓ 垂体 ↓ ↓ 抗利尿激素 产生渴觉 ↓(﹢) 肾小管集合管重吸收水 主动饮水 ↓ ↓(﹣) 尿量减少 13、神经调节与体液调节的关系: ①:不少内分泌腺直接或间接地受到神经系统的调节 ②:内分泌腺所分泌的激素也可以影响神经系统的发育和功能 例如:甲状腺激素成年人分泌过多:甲亢 过少;甲状腺肿大(大脖子病) 婴儿时期分泌过少:呆小症 免疫器官(如:扁桃体、淋巴结、骨髓、胸腺、脾等) 吞噬细胞 14、免疫系统的组成 免疫细胞 T细胞(在胸腺中成熟) 淋巴细胞 B细胞(在骨髓中成熟) 免疫活性物质(如 :抗体) 第一道防线:皮肤、粘膜等 非特异性免疫(先天免疫)第二道防线:体液中杀菌物质(溶菌酶)、吞噬细胞 15、免疫 特异性免疫(获得性免疫) 第三道防线:体液免疫和细胞免疫 在特异性免疫中发挥免疫作用的主要是淋巴细胞 16、免疫系统的功能:防卫功能、监控和清除功能 17、抗原:能够引起机体产生特异性免疫反应的物质(如:细菌、病毒、人体中坏死、变异的细胞、组织) 抗体:专门抗击抗原的蛋白质 18、免疫分为;体液免疫(主要是B细胞起作用)、细胞免疫(主要是T细胞起作用) 19、体液免疫过程:(抗原没有进入细胞,过程为“原吞to be”) 增殖分化 浆细胞 抗体 抗原 吞噬细胞 T细胞 B细胞 记忆B细胞 记忆B细胞的作用:可以在抗原消失很长一段时间内保持对这种抗原的记忆,当再接触这种抗原时,能迅速增殖和分化,产生浆细胞从而产生抗体。 抗体与抗原结合产生细胞集团或沉淀,最后被吞噬细胞吞噬消化 20、细胞免疫(抗原进入细胞) 增殖分化 记忆T细胞 侵入细胞的抗原 T细胞 效应T细胞 效应T细胞作用:使靶细胞裂解,抗原暴露 暴露的抗原会被抗体(和体液免疫的相互协作)或吞噬细胞吞噬、消灭 过敏反应:再次接受过敏原(第一次接触不会有过敏反应) 21、免疫失调引起的疾病 自身免疫疾病:类风湿、系统性红斑狼疮 免疫缺陷病 : 艾滋病(简称AIDS,病毒简称HIV) 22、过敏反应的特点:发作迅速、反应强烈、消退较快;一般不会破坏组织细胞, 也不会引起组织严重损伤;有明显的个体差异和遗传倾向 第三章:植物的激素调节 1、在胚芽鞘中 感受光刺激的部位在胚芽鞘尖端 向光弯曲的部位在胚芽鞘尖端下部 产生生长素的部位在胚芽鞘尖端 (1 、不同浓度的生长素作用于同一器官上时,引起的生理功效不同(促进效果不同或抑制效果不同) 2、同一浓度的生长素作用于不同器官上时,引起的生理功效也不同,这是因为不同器官对生长素的敏感性不同(敏感性大小:根﹥芽﹥茎),也说明不同器官正常生长所要求的生长素浓度也不同。 3、曲线在A’、B’、C’点以前的部分分别体现了不同浓度生长素对根、芽、茎的不同促进效果,而A、B、C三点则代表最佳促进效果点,(促进根、芽、茎的生长素最适浓度依次为10-10mol/l、10-8mol/l、10-4mol/l左右),AA’、BB’、CC’段表示促进作用逐渐降低,A’、B’、C’点对应的生长素浓度对相应的器官无影响,超过A’、B’、C’点浓度,相应的器官的生长将被抑制。) 2、胚芽鞘向光弯曲生长原因: ①:横向运输(只发生在胚芽鞘尖端):在单侧光刺激下生长素由向光一侧向背光一侧运输 ②:纵向运输(极性运输):从形态学上端运到下端,不能倒运 ③:胚芽鞘背光一侧的生长素含量多于向光一侧(生长素多生长的快,生长素少生长的慢),因而引起两侧的生长不均匀,从而造成向光弯曲。 区别于根的正向地性、茎的负向地性: 生长素浓度:A=B<C=D,但对根而言,A点促进生长,C点抑制生长,所以根向下弯曲;而对茎,B、D点都促进生长,但D点的促进作用大,故茎向上生长(可对照课本P50的图理解)。 3、植物激素:由植物体内产生、能从产生部位运送到作用部位,对植物的生长发育有显著影响的微量有机物。 植物生长调节剂:人工合成的对植物的生长发育有调节作用的化学物质 4、色氨酸经过一系列反应可转变成生长素 在植物体中生长素的产生部位:幼嫩的芽、叶和发育中的种子 生长素的分布:植物体的各个器官中都有分布,但相对集中在生长旺盛的部分 5、植物体各个器官对生长素的忍受能力不同:茎 > 芽 > 根 6、生长素的生理作用:两重性,既能促进生长,也能抑制生长;既能促进发芽也能抑制发芽;既能防止落花落果,也能疏花疏果 在一般情况下:低浓度促进生长,高浓度抑制生长 7、生长素的应用: 无籽蕃茄:花蕊期去掉雄蕊(未授粉),用适宜浓度的生长素类似物涂抹柱头 顶端优势:顶端产生的生长素大量运输给侧芽抑制侧芽的生长 去除顶端优势就是去除顶芽 用低浓度生长素浸泡扦插的枝条下部促进扦插的枝条生根 8、赤霉素 合成部位:未成熟的种子、幼根、幼叶 主要作用:促进细胞伸长,从而促进植株增高;促进种子萌发、果实的生长。 脱落酸 合成部位:根冠、萎焉的叶片 分布:将要脱落的组织和器官中含量较多 主要作用:抑制细胞的分裂,促进叶和果实的衰老和脱落 细胞分裂素 合成部位:根尖 主要作用:促进细胞的分裂 乙烯 合成部位:植物体各个部位 主要作用:促进果实的成熟 第四章 种群和群落 种群密度(最基本的数量特征) 出生率、死亡率 迁入率、迁出率 1、种群特征 增长型 年龄组成 稳定型 衰退型 性别比例 2、种群密度的测量方法:样方法(植物和运动能力较弱的动物)、标志重捕法(运动能力强的动物) 3:种群:一定区域内同种生物所有个体的总称 群落:一定区域内的所有生物 生态系统:一定区域内的所有生物与无机环境 地球上最大的生态系统:生物圈 4、种群的数量变化曲线: ① “ J”型增长曲线 条件:食物和空间条件充裕、气候适宜、没有敌害。 ②“ S”型增长曲线 条件:资源和空间都是有限的 (把曲线图纵坐标改成种群增长率,图形又会变成怎样)(文科生了解) 5、K值(环境容纳量):在环境条件不破坏的情况下,一定空间中所能维持的种群的最大数量 6、丰富度:群落中物种数目的多少(区别种群密度) 互利共生(如图甲):根瘤菌、大肠杆菌等 捕食(如图乙) 7、种间关系 竞争(如图丙):不同种生物争夺食物和空间(如羊和牛) 强者越来越强弱者越来越弱 寄生:蛔虫,绦虫、 虱子 蚤 植物与光照强度有关 垂直结构 动物与食物和栖息地有关 8、群落的空间结构: 水平结构 水平方向上地形变化、土壤湿度、光照变化等造成 9、演替:随着时间的推移,一个群落被另一个群落代替的过程 初生演替:是指在一个从来没有被植物覆盖的地面或者是原来存在过植被,但被彻底消灭的地方发生的演替 次生演替:是指在原有植被虽已不存在,但原有土壤条件基本保留,甚至还保留了植物的种子或其它繁殖体的地方发生的演替 人类活动往往会使群落的演替按照不同于自然演替的速度和方向进行 第五章:生态系统及其稳定性 非生物的物质和能量:(无机环境) 生产者:自养生物,主要是绿色植物 生态系统的 蓝藻/硝化细胞 组成成分 消费者:绝大多数动物,除营腐生的动物 1、结构 如:蚯蚓为分解者 分解者:能将动植物尸体或粪便为食的生物 (细菌、真菌、腐生生物) 营养结构:食物链和食物网 食物链中只有生产者和消费者,其起点是生产者植物,终点是最高营养级动物 (第一营养级:生产者 初级消费者:植食性动物) 2、生态系统的功能: , 和 3、生态系统总能量来源:生产者固定(同化)太阳能的总量 生态系统某一营养级(营养级≥2) 能量来源:上一营养级 能量去处:呼吸作用、未利用、分解者分解作用、传给下一营养级 特别注意:蜣螂吃大象的粪便,蜣螂并未利用大象同化的能量;在生态农业中,沼渣用来肥田,农作物也并未利用其中的能量,只是利用其中的无机盐(即肥)。 4、能量流动的特点:单向流动、逐级递减。 能量在相邻两个营养级间的传递效率:10%~20% 5、研究能量流动的意义: ①:可以帮助人们科学规划,设计人工生态系统,使能量得到最有效的利用 ②:可以帮助人们合理地调整生态系统中的能量流动关系 6、能量流动与物质循环之间的异同 不同点:在物质循环中,物质是被循环利用的;能量在流经各个营养级时,是逐级递减的,而且是单向流动的,而不是循环流动 联系: ①两者同时进行,彼此相互依存,不可分割 ②能量的固定、储存、转移、释放,都离不开物质的合成和分解等过程 ③物质作为能量的载体,使能量沿着食物链(网)流动;能量作为动力,使物质能够不断地在生物群落和无机环境之间循环往返 7、生态系统中的信息种类:物理信息、化学信息、行为信息(孔雀开屏、蜜蜂跳舞、求偶炫耀) 8、信息传递在生态系统中的作用: ①:生命活动的正常进行,离不开信息的传递;生物种群的繁衍,也离不信息的传递 ②:信息还能够调节生物的种间关系,以维持生态系统的稳定 信息传递在农业生产中的应用:①提高农产品和畜产品的产量 ②对有害动物进行控制 9、生态系统的稳定性:生态系统所具有的保持或恢复自身结构和功能相对稳定的能力。 生态系统具有自我调节能力,而且自我调节能力是有限的 抵抗力稳定性:生态系统抵抗外界干扰并使自身的结构和功能保持原状的 10、生态系统 能力 的稳定性 恢复力稳定性:生态系统在受到外界干扰因素的破坏后恢复到原状的能力 一般来说,生态系统中的组分越多,食物网越复杂,其自我调节能力就越强,抵抗力稳定性越高,恢复力稳定性越差 11、提高生态系统稳定性的方法: ①控制对生态系统干扰的程度,对生态系统的利用应该适度,不应超过生态系统的自我调节能力 ②对人类利用强度较大的生态系统,应实施相应的物质、能量投入,保证生态系统的内部结构和功能的协调 12、生态环境问题是全球性的问题 13、生物多样性:生物圈内所有的植物、动物和微生物,它们所拥有的全部基因以及各种各样的生态系统,共同构成了生物多样性 生物多样性包括:物种多样性、基因多样性、生态系统多样性 潜在价值:目前人类不清楚的价值 14、生物多样 间接价值:对生态系统起重要调节作用的价值(生态功能,如涵养水源,保持水土) 性的价值 直接价值:对人类有食用、药用和工业原料等使用意义,以及有旅游观赏、科学研究和文学艺术创作等非实用意义的 15、保护生物多样性的措施:就地保护(自然保护区)、易地保护(动物园) 选修3 现代生物科技专题知识点 专题1 基因工程 一.知识网络 概念:又叫DNA重组技术,是指按照人们的愿望,进行严格的设计, 通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,创造出 更符合人们需要的新的生物类型和生物产品 基因工程工具 来源:主要从原核生物分离纯化 (“分子手术刀”) 限制性核酸内切酶(限制酶) 作用:识别双链DNA中某种特定的核苷酸序列,并使特定部位的磷酸二酯键断开 结果:产生黏性末端或平末端 E·coliDNA连接酶 DNA连接酶 “分子缝合针” 基 来源:大肠杆菌 本 作用 :连接黏性末端 T4 DNA连接酶 工 来源:T4 噬菌体 具 作用:可连接两种末端 常用载体:质粒 能在受体细胞中复制并稳定保存 基因进入受体细胞的载体 必备条件 具有一至多个限制酶切点 (“分子运输车”) 具有标记基因 其他载体:噬菌体的衍生物、动植物病毒 目的基因:主要指编码蛋白质的结构基因 从基文库中获取目的基因 方法 利用PCR技术扩增目的基因 用化学方法直接人工合成 基因组文库 部分基因文库(cDNA文库) 目的基因的获取 目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代, 使目的基因能够表达和发挥作用 组成:目的基因 + 启动子 + 终止子 + 标记基因 基因表达载体 基因工程的操作程序 的构建 将目的基因导入植物细胞:农杆菌转化法、基因枪法、花粉管通道法 将目的基因导入动物细胞:显微注射法 Ca2+ 含重组DNA分 将目的基因导入微生物细胞:受体细胞 ↓ 感受态 子的缓冲液 感受态细胞吸 细胞 收DNA分子 将目 的基 因导 入受 体细 胞 检测转基因生物的染色体DNA是否插入了目的基因(DNA分子杂交法) ↓ 检测目的基因是否转录出了mRNA(分子杂交法) ↓ 检测目的基因是否翻译成蛋白质(抗原—抗体杂交法) 目的基因的 检测与鉴定 抗虫转基因植物—减轻农药对环境的污染 植物基因工程 抗病转基因植物 抗逆转基因植物 利用转基因改良植物的品质 提高动物生长速度 改善畜产品的品质 动物基因工程 用转基因动物生产药物 用转基因动物作器官移植的供体 基因工程药品的生产 基因工程 应用 把正常基因导入体内,使该基因表达产物发挥作用 基因治疗 体外基因治疗 方法 体内基因治疗 基因工程操作中的几个问题 DNA连接酶、DNA聚合酶等的理解 蛋白质工程与基因工程比较 项目 蛋白质工程 基因工程 区别 过程 预期蛋白质功能→设计蛋白质结构→推测氨基酸序列→推测脱氧核苷酸序列→合成DNA→表达出蛋白质 获取目的基因→构建表达载体→导入受体细胞→目的基因的检测与鉴定 实质 定向改造或生产人类所需蛋白质 定向地改造生物的遗传性状,以获得人类所需的生物类型或生物产品(基因的异体表达) 结果 生产自然界没有的蛋白质 生产自然界中已有的蛋白质 联系 蛋白质工程是在基因工程的基础上,延伸出来的第二代基因工程。因为对现有蛋白质的改造或制造新的蛋白质,必须通过基因修饰或基因合成实现 如果有一亲代DNA上某个碱基发生突变,一定会使其子代的性状发生改变吗? ①体细胞中某基因发生改变,生殖细胞中不一定出现该基因; ②DNA上某个碱基对发生改变,它不一定位于基因的中能编码氨基酸的部位; ③若为父方细胞质内的DNA上某个碱基对发生改变,则受精后一般不会传给子代; ④若该亲代DNA上某个碱基对发生改变产生的是一个隐性基因,并将该隐性基因传给子代,而子代为杂合子,则隐性性状不会表现出来; ⑤根据密码子的兼并性,有可能翻译出相同的氨基酸; ⑥性状表现是遗传基因和环境因素共同作用的结果,在某些环境条件下,改变了的基因可能并不会在性状上表现出来。 思考:真核生物的基因导入细菌细胞后,不能正常发挥功效的可能原因有哪些? ①被细菌体内的限制性内切酶破坏。②该基因指导合成的蛋白质不能在细菌体内正确修饰和表达。 ③细菌的RNA聚合酶不能识别真核基因的位点,致使不能启动转录。④细菌细胞中没有切除内含子转录部分的酶。 专题2 细胞工程 1. 植物组织培养与动物细胞培养的比较 植物组织培养 动物细胞培养 原理 细胞的全能性 细胞的增殖 培养基的物理性质 固体 液体(合成培养基) 培养基的成分 水、矿质元素、维生素、蔗糖、氨基酸、琼脂、激素等 葡萄糖、氨基酸、无机盐、维生素、动物血清等 结果 培育成新的植株或组织 培育成细胞系或细胞株 培养目的 ①植株快速繁殖 ②脱毒植株的培育 ③人工种子 ④生产药物、杀虫剂等 ⑤转基因植物的培育 ①蛋白质生物制品的生产②皮肤移植材料的培育 ③检测有毒物质 ④生理、病理、药理学研究 取材 植物幼嫩的部位或或花药等 动物胚胎或出生不久的幼龄动物的器官或组织 其他条件 均为无菌操作,需要适宜的温度、pH、O2 等条件 (1)植物组织培养(图见教材) (2)动物细胞培养 ①概念:取动物体的相关组织分散成单个细胞后,在适宜培养基中使细胞生长和增殖的过程。 ②基本过程:培养的动物细胞大都取自动物胚胎或出生不久的幼龄动物的器官组织,将组织取出来以后,先用胰蛋白酶或胶原蛋白酶进行处理,使细胞分散成单个细胞,然后配制一定浓度的悬浮液,在培养瓶中进行原代培养。随着细胞的生长和增殖,大多数细胞不适应悬浮生长,它们必须在固定的表面上生长和分裂,细胞在培养瓶中贴壁生长,随着细胞越来越多,贴壁生长的细胞分裂生长到表面相互接触时就停止分裂增殖,这种现象叫接触抑制。这样就需定期用胰蛋白酶使细胞从瓶壁上脱离下来,配成细胞悬浮液,分装到两个或两上以上的培养瓶中进行传代培养。在传代培养中出现细胞株和细胞系两种类型。(如图所示) 2.植物体细胞杂交与动物细胞融合的比较 植物体细胞杂交 动物细胞融合 细胞融合原理 细胞膜的流动性、细胞的全能性 细胞的全能性 细胞融合方法 用纤维素酶、果胶酶去除细胞壁后诱导原生质体融合 用胰蛋白酶或胶原蛋白酶使细胞分散后,诱导细胞融合 诱导手段 离心、电刺激、振动、显微操作、聚乙二醇等诱导 与植物体细胞杂交相比,还可用灭活的病毒诱导 结果 获取杂种植株 获得杂种细胞,以生产细胞产品 用途 克服远缘杂交不亲和的障碍,扩展杂交亲本范围,培育新品种 制备单克隆抗体、病毒疫苗、干扰素等 (1)植物体细胞杂交技术 植物体细胞杂交就是将不同种植物的体细胞,在一定条件下融合成杂种细胞,并把杂种细胞培育成新的植物体的技术。植物体细胞杂交的障碍,一是植物细胞有细胞壁,二是如何诱导植物细胞融合。利用纤维素酶和果胶酶去除植物细胞壁,这样可保持原生质体的活性。去除细胞壁的原生质体再利用人工诱导的方法融合,人工诱导的方法包括物理法和化学法。物理法包括离心、振动、电激等,化学法一般是用聚乙二醇(PEG)诱导原生质体融合。原生质体融合后的细胞是杂种细胞,利用植物组织培养技术把杂种细胞培养成杂种植株。 (2)动物体细胞核移植 动物体细胞核移植依据的原理还是细胞的全能性。动物细胞的全能性随着动物细胞分化程度的提高而逐渐受到抑制,全能性表达很难,但是动物的细胞核内仍含有该种动物的全部遗传基因,具有发育成完整个体的潜能,即动物的细胞核仍具有全能性。但只靠动物的细胞核是不行的,必需提供促进细胞核表达全能性的物质和营养条件,还要保证细胞的完整性,这样去核的卵母细胞是最合适的细胞。因为卵母细胞体积大、易操作,含有促使细胞核表达全能性的物质和营养条件。通过核移植形成重组细胞,重组细胞必须通过细胞培养形成重组胚胎,然后才能进行胚胎移植,进入代孕母体,发育成成熟胚胎,产出即是克隆动物,该动物的核基因型与供体体细胞完全相同,该技术是一种无性繁殖技术。 (3)动物细胞融合、单克隆抗体制备 细胞融合是指两个或多个动物细胞结合形成一个细胞的过程,也叫细胞杂交。杂交细胞是具有两个或多个细胞的遗传信息的单核细胞。杂交细胞的形成需要人工诱导,如聚乙二醇(PEG)、灭活的仙台病毒、电激等。融合的细胞要繁殖就要进行动物细胞的培养,通过动物细胞的培养,杂交细胞表现出两个亲本各自的优良特点。 单克隆抗体的制备,首先应获得杂交瘤细胞,其过程是用已免疫的效应B细胞和骨髓瘤细胞杂交获得三种细胞:BB细胞、B瘤细胞、瘤瘤细胞,然后用选择培养基筛选获得杂交瘤细胞。杂交瘤细胞要发挥其繁殖快、产生特异性抗体的优点,应通过动物细胞培养才能实现。所以无论是动物细胞融合还是单克隆抗体的制备,都是以动物细胞培养为基础的。 3.生物技术与育种 技术 原理 优点 缺点 诱变育种 基因突变 提高生物便宜的频率,使后代变异性状较快稳定;可大幅度改良某些性状,缩短育种进程 盲目性大,需大量处理供试材料 杂交育种 基因重组 使位于不同个体的优良性状集中于一个个体 周期长,难以克服远缘杂交不亲和的障碍 单倍体育种 染色体变异 获得个体均为纯种,明显缩短育种年限 技术复杂,须与杂交育种配合、且需细胞工程参与 多倍体育种 染色体变异 器官大,提高产量和营养成分 适用于植物,动物方面难以展开 基因工程育种 分子遗传学原理 打破物种界限,定向地改造生物遗传性状 技术要求高 细胞工程育种 细胞生物学和分子生物学原理、基因突变 植物体细胞杂交可以克服远缘杂交不亲和的障碍,扩大了用于杂交的亲本范围;定向改造生物遗传性状 远缘杂种不能按人们的需要表现出亲代的优良性状 一、知识网络 时间: 初情期以后 场所: 睾丸曲细精管 二者重要区别: 体 精子的发生 哺乳动物卵泡 内 过程:三个阶段 的形成和在卵 受 巢内的储备是 精 在出生前完成 和 时间:性别分化以后 的,而精子是从 早 卵子的发生 场所:卵巢输卵管 初情期开始的 期 过程 胚 受精前的准备阶段 准备阶段1:精子获能 胎 受精 准备阶段2:卵子的准备 发 受精阶段:顶体反应、透明带反应、卵黄膜封闭作用 育 胚胎发育:受精卵→卵裂→桑椹胚→囊胚→原肠胚 试管动物技术:是指通过人工操作使卵子和精子在体外条件 下成熟和受精,并通过培养发育为早期胚胎 后,再经移植产生后代的技术 胚 胎 工程 ①促性腺激素处理 卵母细胞的采集和培养 ②超声波探测仪、内窥镜等 ①假阴道法 体外 采集 ②手握法 体 受精 精子的采集和获能 ③电刺激法 外 受 获能 ①培养法 精 ②化学法 和 受精:获能的精子和培养成熟的卵子发生作用 早 期 培养液成分:无机盐、有机盐、维生素、激素、 胚 早期胚 氨基酸、核苷酸、血清等 胎 胎培养 不同动物胚胎移植时间不同 培 定义 养 现状和意义 胚胎移植 生理学基础:与供体、受体的生理状况有关 胚胎工程的 基本程序 应用及前景 定义 胚胎分割 设备:实体显微镜和显微操作仪 定义:由早期胚胎或原始性腺分离出来的一类细胞。 胚胎干细胞 应用 二.考点解析 1.精子、卵子的发生 两者都是在生殖器官内,经过减数分裂而形成的。关于两者的区别应注意以下几点: (1)卵泡的形成和卵巢内的储备,是在出生前完成的,这是两者在发生上的重要区别,但不是唯一区别。 (2)精子的发生中减数分裂的两次分裂是连续的,在曲细精管内进行的,场所是唯一的。卵子发生减数分裂的两次分裂是不连续的,第一次是在卵巢内完成,形成的次级精母细胞和第一极体进入输卵管,与精子的结合过程中完成第二次减数分裂。因此,场所在卵巢和输卵管两处,也不是唯一的。 (3)减数分裂中细胞质的分配、形成成熟性生殖细胞的数目、是否需要变形,都是两者在发生上的区别。 现将二者的发生比较如下: 项目 精子发生 卵子发生 区 别 场所 睾丸的曲细精管(场所惟一) 卵巢(MI)、输卵管(MII) (场所不惟一) 时间 初情期后 性别分化后开始,卵泡(含次级卵母细胞和第一极体的形成)的形成和在卵巢内的储备,是在出生前(胎儿时期)完成的,减II是在精子和卵子的结合过程中(即受精过程中)完成的 过程特点 ①MI和MII是连续的,需要变形 ②细胞质均等分配 ①MI和MII是不连续的,不需要变形 ②细胞质不均等分配 结果 形成4个精子 形成一个卵细胞和3个极体 相同点 ① 原始生殖细胞的增殖为有丝分裂 ② 生殖细胞的成熟为减数分裂 ③ 成熟过程均经一次复制和两次分裂,子细胞中染色体数目减半 2.受精作用 ①成熟的精子并不代表具有受精的能力,必须获能后才具备受精能力,刚刚排出的精子,不能立即与卵子受精,必须在雌性动物生殖道发生相应的生理变化后,才能获得受精能力,这一现象称为精子获能。 ②排出的卵子并未成熟且成熟程度因动物种类不同而异,但只有达到减II中期时,才具备与精子受精的能力。 ③对于受精阶段的理解,要先弄清卵母细胞的层层基本结构,才能掌握精子穿行的路线和发生的反应。 ④对于受精的标志和受精完成的标志应该区分开,受精的标志是第二极体的形成,受精完成的标志是雌雄原核融合成合子。雌雄原核不能理解成卵子、精子原来的细胞核,而是在原来细胞核的基础上形成的新核,原核膜已破裂。 ⑤受精卵中的遗传物质中,核遗传物质一半来自精子(父方),一半来自卵子(母方), 质遗传物质几乎全来自卵子。 3.受精与胚胎的早期培养 精子和卵子受精后,应将受精卵放入发育培养液中继续培养。 (1)发育培养液 ①用途:精子和卵子在体外受精后,用于受精卵的继续培养。 ②成分:水、无机盐、有机盐、维生素、激素、氨基酸、核苷酸、动物血清等。 (2)过程(以牛为例) 大致为:体外受精→良种牛早期胚胎→胚胎移植→健康受体牛→良种犊牛→成熟期牛 4.胚胎移植 (1)实质:是早期胚胎在相同生理环境条件下空间位置的转换,而胚胎本身的遗传物质并不发生改变,因此各种性状能保持其原来的优良特性。这是胚胎工程的最后一道“工序”。 (2)基本程序 下面以牛胚胎移植为例,移植的基本程序如下: (3)胚胎移植成功与否的两个条件 一是胚胎移植一般应在同种的雌性供体和受体之间进行。这是因为,同种动物之间的生理特征相近,进行胚胎移植易于成功。在这里同“种”是指同“物种”。例如:加拿大荷斯坦奶牛胚胎移植给我国黄牛,生出了荷斯坦奶牛。 二是进行胚胎移植的供体和受体的生理状态要相同。 5.胚胎干细胞 (1)胚胎干细胞,简称ES细胞或EK细胞,是由早期胚胎或原始性腺中分离出来的一类细胞,具有胚胎细胞的特性。 它能长期维持未分化状态,又有全能分化的潜能和无限增殖的能力,在体外培养时仍能维持正常和稳定的染色体组型,在特定的环境诱导下,能分化成各类细胞系。因此 ,它是唯一不死的全能或多能细胞,并能够无限分化,它能制造机体需要的全部细胞。 (2)应用前景 ES细胞的分离和培养成功是胚胎工程中的重大成就之一,在基础生物学、畜牧学和医学上都具有十分重要的应用价值。 ①ES细胞可用于治疗人类的某些顽症 利用ES细胞可以被诱导分化成新的组织细胞的特性,移植ES细胞可以使坏死或退化的部位得以修复并恢复正常功能。 ②培育成组织器官,用于器官移植。 ③对ES细胞的培养和诱导,为揭示细胞分化和细胞凋亡的机理提供了有效手段。 ④ES细胞可用于对哺乳动物个体发生和发育规律的研究。 专题5 生态工程 一、知识网络 生态工程建设目的:遵循自然界 的规律,充分发挥资源的生产潜力,防止 ,达 到 和 的同步发展。(少消耗、多效益、 ) 生态经济:主要是通过实行“ ”原则,使一个系统产生出的污染物,能够成为本系统或者另一个 系统的 ,从而实现废弃物的资源化,而实现循环经济最重要的手段之一是 。 1) 原理:物质能在生态系统中循环往复, 2) 原理:物种繁多复杂的生态系统具有较高的 生态工程原理 3) 原理:生态系统的生物数量不能超过 (环境容纳量)的限度 4) 原理:生态系统建设要考虑自然、 、 的整体影响 5) 原理 系统的结构决定 原理:要通过改善和优化系统结构改善功能 系统整体性原理:系统各组分间要有适当的 ,使得能量、 物质、信息等的转换和流通顺利完成,并实现总 体功能大于各部分 的效果,即“1+1>2” 答案: 物质循环 环境污染 经济效益 生态效益 可持续 循环经济 生产原料 生态工程 物质循环再生 分层分级利用 物种多样性 抵抗力稳定性 协调与平衡 环境承载力 整体性 经济 社会 系统学和工程学 功能 比例关系 之和 二、考点解析 1、分析桑基鱼塘的物质和能量流动途径。 桑基鱼塘系统中物质和能量的流动是相互联系的,能量的流动包含在物质的循环利用过程中,随着食物链的延伸逐级递减。能量的多级利用和物质的循环利用:桑叶喂蚕,蚕产蚕丝;桑树的凋落物和蚕粪落到鱼塘中,作为鱼饲料,经过鱼塘内的食物链过程,可促进鱼生长;甘蔗可榨糖,糖渣喂猪,猪的排泄物进入鱼塘;鱼的排泄物及其他未被利用的有机物和底泥经微生物的分解,又可作为桑和甘蔗的有机肥料。桑基鱼塘巧妙地利用了很难利用的大片低湿地,发展了多种经营,为农民创造了多种收入的门路,完全符合“无废弃农业”的要求。 2、导致1998年长江洪水泛滥的主要原因是什么? 根本原因:长江上游乱砍滥伐森林,水源涵养和水土保持功能急剧降低,造成大量泥沙淤积河道;中游围湖造田、乱占河道,造成具有蓄洪作用的湖泊面积急剧减少。直接原因:1998年度的罕见降雨。但这也与全球温室气体排放量增加而导致的温度升高、气候异常有关。解决长江洪水泛滥的措施有:我国政府提出的“积极营造长江中上游水源涵养林和水土保持林”计划,即以生物措施为主,结合工程措施,提高森林覆盖率;“退耕还湖”和改革不合理耕作方式等。在进行生态工程建设时,要考虑到怎样解决农村(尤其是湖区或山区的迁出人员)的能源来源问题以及如何提高农民的经济收入。 3、何谓“石油农业”?“石油农业”的生产模式应当怎样改进? “石油农业”大量使用化肥、农药和机械的生产方式,因对石油等能源有高度的依赖性而得名。它把农业生产这一复杂的生物过程,变成了简单的机械过程和化学过程。由于其投入高,产出也高,对粮食安全保障和提高人民生活水平起到了巨大的作用,但同时它所产生的废弃物和有害物质的数量也很庞大,大大削弱了农业生态系统的稳定性和持续生产力,并造成日益严重的农产品污染和环境污染等问题。“石油农业”的生产模式在不同的国家有不同的改进措施。例如,在我国,人多地少,应该大力发展生态农业。实施的具体措施包括:可以根据田间作物的需要适量施用高效、低毒、低残留的农药,多施有机肥,提高作物对水、肥等资源的利用效率,对作物秸秆和畜禽粪便进行再利用,实现物质的多级利用,等等。一方面要不断提高土地的产出水平;另一方面要减少农业活动对环境的污染,促进社会的可持续发展。 4、如何理解“污染物是放错地方的资源”? 对环境造成危害的污染物,采用一定的措施和技术,就能够进行回收和循环利用,这样不但能够减少环境污染,而且提高了资源的利用效率,减少了资源的浪费。例如,对废污水中的重金属或氮、磷等养分就可以进行回收再利用。因此说污染物是放错了地方没有被利用的资源。 5、为什么我国要大力发展沼气工程? 21世纪是实现我国农业现代化的关键历史阶段,现代化的农业应该是高效的生态农业。沼气工程把农业生产、农村经济发展和生态环境保护、资源高效利用融为一体,不仅较好地解决了农村的能源来源问题,而且实现了废弃物的再循环利用和资源化,创造了新的生态产业,如沼气设施的建设和维护,促进了以农牧结合为中心的多种经营,从而为农村剩余劳动力提供了就业机会,促进了农村的综合发展。目前沼气工程存在的问题有:北方地区沼气产气在冬天不稳定,需要加热;沼气的一次性投资较大,相当部分的农民财力有困难;对沼气的研究较薄弱,例如,对发酵过程中有关微生物及一些酶的研究。应当加强这方面的研究,以促进沼气工程的推广。查看更多