2019-2020学年辽宁省阜新市第二高级中学高一上学期第一次月考数学试题(解析版)

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

2019-2020学年辽宁省阜新市第二高级中学高一上学期第一次月考数学试题(解析版)

‎2019-2020学年辽宁省阜新市第二高级中学高一上学期第一次月考数学试题 一、单选题 ‎1.下列字母中表示有理数集合的是( )‎ A.N B.R C.Q D.Z ‎【答案】C ‎【解析】根据常用数集的字母表示即可选出答案.‎ ‎【详解】‎ 表示:自然数集,表示:全体实数集,表示:有理数集,表示整数集.‎ 故选:C ‎【点睛】‎ 本题主要考查常用数集的字母表示,属于简单题.‎ ‎2.,则x=( )‎ A.2 B.-2 C. D.0‎ ‎【答案】C ‎【解析】,解得.‎ ‎【详解】‎ ‎,解得.‎ 故选:C ‎【点睛】‎ 本题考查绝对值方程的解法,属于简单题.‎ ‎3.( )‎ A. B. C. D.‎ ‎【答案】D ‎【解析】按照完全平方公式展开即可.‎ ‎【详解】‎ ‎.‎ 故选:D ‎【点睛】‎ 本题主要考查完全平方的展开式,属于简单题.‎ ‎4.( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】利用平方差公式展开即可.‎ ‎【详解】‎ ‎.‎ 故选:A ‎【点睛】‎ 本题主要考查平方差公式,属于简单题.‎ ‎5.集合的真子集个数为( )‎ A.0 B.1 C.2 D.3‎ ‎【答案】D ‎【解析】根据真子集的概念列出所有真子集即可.‎ ‎【详解】‎ 集合的真子集为:,,,共个.‎ 故选:D ‎【点睛】‎ 本题主要考查真子集的概念,属于简单题.‎ ‎6.已知集合A={x|x2-1=0},则下列式子中:①1∈A;②{-1}∈A;③∅⊆A;④{1,-1}⊆A.正确的个数是(  )‎ A.1个 B.2个 C.3个 D.4个 ‎【答案】C ‎【解析】先解得集合A的元素.然后根据元素的具体情况进行逐一判断即可.‎ ‎【详解】‎ 因为A={x|x2﹣1=0},‎ ‎∴A={﹣1,1}‎ 对于①1∈A显然正确;‎ 对于②{﹣1}∈A,是集合与集合之间的关系,显然用∈不对;‎ 对③∅⊆A,根据集合与集合之间的关系易知正确;‎ 对④{1,﹣1}⊆A.同上可知正确.‎ 故选:C.‎ ‎【点睛】‎ 本题考查的是集合元素与集合的关系问题.在解答的过程当中充分体现了解方程的思想、逐一验证的技巧以及元素的特征等知识,属于基础题.‎ ‎7.下列是命题的是( )‎ A.二次函数图象真好看! B.get out !‎ C.我是高中生 D.我是来学习的吗?‎ ‎【答案】C ‎【解析】根据命题的概念,即可选出正确答案.‎ ‎【详解】‎ 根据命题的概念:用语言、符号或式子表达的,可以判断真假的陈述句称为命题.‎ 可知:,为感叹句,故不是命题.‎ 是可以判断真假的陈述句,是命题.‎ 为疑问句,故不是命题.‎ 故选:C ‎【点睛】‎ 本题主要考查命题的概念,属于简单题.‎ ‎8.的否定是( )‎ A. B. C. D.‎ ‎【答案】B ‎【解析】根据:“大于等于”的否定是“小于”,即可得出答案.‎ ‎【详解】‎ 的否定是:.‎ 故选:B ‎【点睛】‎ 本题考查命题的否定,属于简单题.‎ ‎9.已知,则( )‎ A. B. C. D.‎ ‎【答案】A ‎【解析】根据不等式的性质即可得出答案.‎ ‎【详解】‎ 选项:不等式两边同时乘以一个正数,不等式的符号不变,故正确.‎ 选项:不等式两边同时加上一个数,不等式的符号不变,故错误.‎ 选项:令,,满足,但,故错误.‎ 选项:令,,满足,但无意义,故错误.‎ 故选:‎ ‎【点睛】‎ 本题主要考查不等式的性质,属于简单题.‎ ‎10.方程组的解集是( )‎ A. B. C. D.‎ ‎【答案】C ‎【解析】由得:,代入,解得:.再代入,解得:.‎ ‎【详解】‎ 由得:,代入,‎ 化简得:,解得:.‎ 再代入解得:.‎ 故选:C ‎【点睛】‎ 本题主要考查二元一次方程组,属于简单题.‎ ‎11.设,是两个集合,则“”是“”的( )‎ A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 ‎【答案】C ‎【解析】试题分析:若,对任意,则,又,则 ‎,所以,充分性得证,若,则对任意,有,从而,反之若,则,因此,必要性得证,因此应选充分必要条件.故选C.‎ ‎【考点】充分必要条件.‎ ‎12.设命题,则为( )‎ A. B.‎ C. D.‎ ‎【答案】C ‎【解析】【详解】试题分析:根据否命题的定义,即既否定原命题的条件,又否定原命题的结论,特称命题的否定为全称命题,所以命题的否命题应该为,即本题的正确选项为C.‎ 二、填空题 ‎13.,则的取值范围为__________.‎ ‎【答案】‎ ‎【解析】由,解得:,或.‎ ‎【详解】‎ 由,解得:,或.‎ 故答案为:‎ ‎【点睛】‎ 本题主要考查绝对值不等式的解法.属于简单题.‎ ‎14.已知,,则_________.‎ ‎【答案】‎ ‎【解析】根据并集的运算得:.‎ ‎【详解】‎ ‎,,‎ 由并集的运算得:.‎ 故答案为:‎ ‎【点睛】‎ 本题考查并集的运算,属于简单题.‎ ‎15.已知数轴上,,且,则的值为__________.‎ ‎【答案】或 ‎【解析】因为,解方程即可.‎ ‎【详解】‎ 由题知:,或,‎ 解得:或.‎ 故答案为:或 ‎【点睛】‎ 本题考查数轴上的两点之间距离公式和绝对值方程的解法,属于简单题.‎ ‎16.设集合,,则满足的实数的值所组成的集合为_________.‎ ‎【答案】‎ ‎【解析】首先化简集合,因为,对和分别讨论,得到的值即可.‎ ‎【详解】‎ ‎, ‎ 当时,,,符合题意.‎ 当时,,因为,‎ 所以或,解得:,或.‎ 综上:,或,或.‎ 故答案为:‎ ‎【点睛】‎ 本题主要考查集合间的子集关系,解本题时,容易忽略对空集的讨论,属于简单题.‎ 三、解答题 ‎17.已知集合,,.‎ ‎(1)求;‎ ‎(2) .‎ ‎【答案】(1) ;(2) .‎ ‎【解析】(1)根据交集的运算即可得到:.‎ ‎(2)根据补集的运算即可得到:.‎ ‎【详解】‎ ‎(1)因为,,‎ 所以.‎ ‎(2)因为,,‎ 解得:.‎ ‎【点睛】‎ 本题第一问考查交集的运算,第二问考查补集的运算,属于简单题.‎ ‎18.解下列一元二次方程.‎ ‎(1); ‎ ‎(2).‎ ‎【答案】(1),或;(2),或.‎ ‎【解析】(1)由十字相乘将化简为:,即可求出答案.‎ ‎(2)由十字相乘将化简为:,即可求出答案.‎ ‎【详解】‎ ‎(1),‎ 解得:,或.‎ ‎(2),‎ 解得:,或.‎ ‎【点睛】‎ 本题第一问和第二问主要考查利用十字相乘法求一元二次方程,属于简单题.‎ ‎19.求下列方程组的解集.‎ ‎(1); ‎ ‎(2).‎ ‎【答案】(1);(2).‎ ‎【解析】(1)由得到:,代入,解得,再将代入,解得.‎ ‎(2),由①③得: ④,由②知:,代入④得:,将代入,解得:,将,代入③,解得:.解集为:‎ ‎【详解】‎ ‎(1)由得到:.‎ 代入,得:‎ 解得:.‎ 再将代入,解得.‎ 解集为:.‎ ‎(2)‎ ‎①③得: ④,‎ 由②知:,代入④得:‎ ‎,解得:.‎ 将代入,解得:.‎ 将,代入③,解得:‎ 解集为:.‎ ‎【点睛】‎ 本题第一问考查了利用代入消参法解二元一次不等式组,第二问考查了利用加减消元法求三元一次方程组,重点考查学生的计算能力,属于简单题.‎ ‎20.求下列不等式的解集.‎ ‎(1);‎ ‎(2).‎ ‎【答案】(1);(2)或 ‎【解析】(1)由,解不等式即可.‎ ‎(2)由或,解不等式即可.‎ ‎【详解】‎ ‎(1),解得:.‎ ‎(2)或,‎ 解得:或.‎ ‎【点睛】‎ 本题第一问,第二问主要考查绝对值不等式的解法,属于简单题.‎ ‎21.设是方程的两根,不解方程,求下列各式的值.‎ ‎(1); ‎ ‎(2); ‎ ‎(3).‎ ‎【答案】(1)= ;(2)=;(3)=.‎ ‎【解析】(1)首先求出,,代入即可.‎ ‎(2)将,代入即可.‎ ‎(3)将,代入即可.‎ ‎【详解】‎ 由题知:,,‎ ‎(1).‎ ‎(2).‎ ‎(3)‎ ‎.‎ ‎【点睛】‎ 本题三问考查了根系关系,完全平方公式和立方和公式,主要考查计算能力,属于简单题.‎
查看更多

相关文章

您可能关注的文档