- 2021-05-10 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
八年级数学下册知能提升作业一第17章分式17
知能提升作业(一) 第17章分式 17.1分式及其基本性质 一、选择题(每小题4分,共12分) 1.(2012·义乌中考)下列计算错误的是( ) (A) (B) (C) (D) 2.下列各题中,所求的最简公分母,错误的是( ) (A)与的最简公分母是6x2 (B)与的最简公分母是3a2b3c (C)与的最简公分母是m2-n2 (D)与的最简公分母是ab(x-y)(y-x) 3.下列分式中无论x取何值,一定有意义的是( ) (A) (B) (C) (D) 二、填空题(每小题4分,共12分) 4.若分式中,x,y都扩大为原来的2倍,则该分式的值是_________. 5.请写出一个对任意实数都有意义的分式.你所写的分式是_________. 6.(2012·内江中考)已知三个数x,y,z满足则的值为_________. 三、解答题(共26分) 7.(8分)当x取何值时,分式 (1)有意义;(2)无意义;(3)值为0. 8.(8分)先化简,再求值. - 4 - (1)(2012·德州中考)已知:求的值. (2)如果求分式的值. 【拓展延伸】 9.(10分) (1)“!”是一种数学运算符号,1!=1,2!=2×1,3!=3×2×1,…,请你计算等于多少? (2)①当x取何值时,分式的值为正; ②当x取何值时,分式的值为负; ③当x取何值时,分式的值为-1. 答案解析 1.【解析】选A.A.故本选项错误; B.故本选项正确; C.故本选项正确; D.故本选项正确. 2.【解析】选D.的最简公分母是ab(x-y).故D选项错误. 3.【解析】选A.因为x2≥0,∴x2+1>0,即无论x取何值,x2+1≠0,∴ - 4 - 一定有意义.B中x取0时无意义,C中x取±1时无意义,D中x取-1时无意义. 4.【解析】中,x,y都扩大为原来的2倍的结果为 答案: 5.【解析】所写的式子只要使分母不等于0即可.答案不唯一,如:或等. 答案: (答案不唯一) 6.【解析】因为 所以 则: 即: 化简得: 所以 答案:-4 7.【解析】(1)当(x-3)(x+2)≠0时,即x≠3且x≠-2时,分式有意义; (2)当(x-3)(x+2)=0时,即x=3或x=-2时, 分式无意义; (3)由(x-3)(x+2)≠0,得x≠3且x≠-2.由x2-9=0,得x=±3,又x=3原分式无意义,所以x=-3时,分式的值为0. 8.【解析】(1)原式 - 4 - 当时,原式 (2)∵x2-3x+1=0,∴x≠0. 方程x2-3x+1=0两边都除以x,得 即 ∴ 9.【解析】(1) (2)①∵分式的值为正,∴即x+2>0,解得x>-2,∴当x>-2时,分式的值为正; ②∵分式的值为负,∴ 又∵x2+1>0,∴1-x<0,解得x>1, ∴当x>1时,分式的值为负; ③∵分式的值为-1,即=-1, ∴x+2与|x|-2互为相反数, ∴x+2+|x|-2=0, ∴|x|=-x,解得x≤0, 又∵分式有意义,∴|x|-2≠0,即x≠±2, ∴当x≤0且x≠-2时, 分式的值为-1. - 4 -查看更多