天津市中考数学试卷及答案word解析版

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

天津市中考数学试卷及答案word解析版

天津市2013年中考数学试卷 ‎ 一、选择题(共10小题,每小题3分,满分30分。在每小题给出的四个选项中,只有一项是符合题目要求的)‎ ‎1.(3分)(2013•天津)计算(﹣3)+(﹣9)的结果等于(  )‎ ‎ ‎ A.‎ ‎12‎ B.‎ ‎﹣12‎ C.‎ ‎6‎ D.‎ ‎﹣6‎ ‎2.(3分)(2013•天津)tan60°的值等于(  )[来#%源@:~中教^网]‎ ‎ ‎ A.‎ ‎1‎ B.‎ C.‎ D.‎ ‎2‎ ‎ 3.(3分)(2013•天津)下列标志中,可以看作是中心对称图形的是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ ‎4.(3分)(2013•天津)中国园林网4月22日消息:为建设生态滨海,2013年天津滨海新区将完成城市绿化面积共8210 000m2,将8210 000用科学记数法表示应为(  )‎ ‎ ‎ A.‎ ‎821×102‎ B.‎ ‎82.1×105‎ C.‎ ‎8.21×106‎ D.‎ ‎0.821×107‎ ‎5.(3分)(2013•天津)七年级(1)班与(2)班各选出20名学生进行英文打字比赛,通过对参赛学生每分钟输入的单词个数进行统计,两班成绩的平均数相同,(1)班成绩的方差为17.5,(2)班成绩的方差为15,由此可知(  )‎ ‎ ‎ A.‎ ‎(1)班比(2)班的成绩稳定 B.‎ ‎(2)班比(1)班的成绩稳定 ‎ ‎ C.‎ 两个班的成绩一样稳定 D.‎ 无法确定哪班的成绩更稳定 ‎ 6.(3分)(2013•天津)如图是由3个相同的正方体组成的一个立体图形,它的三视图是(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ ‎ 7.(3分)(2013•天津)如图,在△ABC中,AC=BC,点D、E分别是边AB、AC的中点,将△ADE绕点E旋转180°得△CFE,则四边形ADCF一定是(  )‎ ‎ ‎ A.‎ 矩形 B.‎ 菱形 C.‎ 正方形 D.‎ 梯形 考点:‎ 旋转的性质;矩形的判定.3718684‎ 分析:‎ 根据旋转的性质可得AE=CE,DE=EF,再根据对角线互相平分的四边形是平行四边形判断出四边形ADCF是平行四边形,然后利用等腰三角形三线合一的性质求出∠ADC=90°,再利用有一个角是直角的平行四边形是矩形解答.‎ 解答:‎ 解:∵△ADE绕点E旋转180°得△CFE,‎ ‎∴AE=CE,DE=EF,‎ ‎∴四边形ADCF是平行四边形,‎ ‎∵AC=BC,点D是边AB的中点,‎ ‎∴∠ADC=90°,‎ ‎∴四边形ADCF矩形.‎ 第 11 页 共 11 页 故选A.‎ ‎8.(3分)(2013•天津)正六边形的边心距与边长之比为(  )‎ ‎ ‎ A.‎ ‎:3‎ B.‎ ‎:2‎ C.‎ ‎1:2‎ D.‎ ‎:2‎ ‎9.(3分)(2013•天津)若x=﹣1,y=2,则﹣的值等于(  )‎ ‎ ‎ A.‎ B.‎ C.‎ D.‎ ‎10.(3分)(2013•天津)如图,是一对变量满足的函数关系的图象,有下列3个不同的问题情境:‎ ‎①小明骑车以400米/分的速度匀速骑了5分,在原地休息了4分,然后以500米/分的速度匀速骑回出发地,设时间为x分,离出发地的距离为y千米;‎ ‎②有一个容积为6升的开口空桶,小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,等4分后,再以2升/分的速度匀速倒空桶中的水,设时间为x分,桶内的水量为y升;‎ ‎③矩形ABCD中,AB=4,BC=3,动点P从点A出发,依次沿对角线AC、边CD、边DA运动至点A停止,设点P的运动路程为x,当点P与点A不重合时,y=S△ABP;当点P与点A重合时,y=0.‎ 其中,符合图中所示函数关系的问题情境的个数为(  )‎ ‎ ‎ A.‎ ‎0‎ B.‎ ‎1‎ C.‎ ‎2‎ D.‎ ‎3‎ 考点:‎ 函数的图象.3718684‎ 分析:‎ ‎①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;‎ ‎②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;‎ ‎③当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;‎ 解答:‎ 解:①小明骑车以400米/分的速度匀速骑了5分,所走路程为2000米,与图象不符合;‎ ‎②小亮以1.2升/分的速度匀速向这个空桶注水,注5分后停止,注水量为1.2×5=6升,等4分钟,这段时间水量不变;再以2升/分的速度匀速倒空桶中的水,则3分钟后水量为0,符合函数图象;‎ ‎③如图所示:‎ 当点P在AC上运动时,S△ABP的面积一直增加,当点P运动到点C时,S△ABP=6,这段时间为5,;当点P在CD上运动时,S△ABP不变,这段时间为4,;当点P在DA上运动时,S△ABP减小,这段时间为3,符合函数图象;‎ 综上可得符合图中所示函数关系的问题情境的个数为2.‎ 故选C.‎ ‎ ‎ 二、填空题(共8小题,每小题3分,满分24分)‎ ‎11.(3分)(2013•天津)计算a•a6的结果等于 a7 .‎ ‎12.(3分)(2013•天津)一元二次方程x(x﹣6)=0的两个实数根中较大的根是 6 .‎ 第 11 页 共 11 页 ‎13.(3分)(2013•天津)若一次函数y=kx+1(k为常数,k≠0)的图象经过第一、二、三象限,则的取值范围是 k>0 .‎ ‎14.(3分)(2013•天津)如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段 AC=BD(答案不唯一) .‎ 考点:‎ 全等三角形的判定与性质.3718684‎ 专题:‎ 开放型.‎ 分析:‎ 利用“角角边”证明△ABC和△BAD全等,再根据全等三角形对应边相等解答即可.‎ 解答:‎ 解:∵在△ABC和△BAD中,‎ ‎,‎ ‎∴△ABC≌△BAD(AAS),‎ ‎∴AC=BD,AD=BC.‎ 故答案为:AC=BD(答案不唯一).‎ ‎15.(3分)(2013•天津)如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为 55 (度).‎ ‎ 16.(3分)(2013•天津)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是  .‎ ‎17.(3分)(2013•天津)如图,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为 7 .‎ 考点:‎ 相似三角形的判定与性质;等边三角形的性质.3718684‎ 分析:‎ 先根据边长为9,BD=3,求出CD的长度,然后根据∠ADE=60°和等边三角形的性质,证明△ABD∽△DCE,进而根据相似三角形的对应边成比例,求得CE的长度,即可求出AE的长度.‎ 解答:‎ 解:∵△ABC是等边三角形,‎ ‎∴∠B=∠C=60°,AB=BC;‎ ‎∴CD=BC﹣BD=9﹣3=6;‎ ‎∴∠BAD+∠ADB=120°‎ ‎∵∠ADE=60°,‎ ‎∴∠ADB+∠EDC=120°,‎ ‎∴∠DAB=∠EDC,‎ 又∵∠B=∠C=60°,‎ 第 11 页 共 11 页 ‎∴△ABD∽△DCE,‎ 则=,‎ 即=,‎ 解得:CE=2,‎ 故AE=AC﹣CE=9﹣2=7.‎ 故答案为:7.‎ ‎18.(3分)(2013•天津)如图,将△ABC放在每个小正方形的边长为1的网格中,点A、B、C均落在格点上.‎ ‎(Ⅰ)△ABC的面积等于 6 ;‎ ‎(Ⅱ)若四边形DEFG是△ABC中所能包含的面积最大的正方形,请你在如图所示的网格中,用直尺和三角尺画出该正方形,并简要说明画图方法(不要求证明) 取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求 .‎ 考点:‎ 作图—相似变换;三角形的面积;正方形的性质.3718684‎ 专题:‎ 计算题.‎ 分析:‎ ‎(Ⅰ)△ABC以AB为底,高为3个单位,求出面积即可;‎ ‎(Ⅱ)作出所求的正方形,如图所示,画图方法为:取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求 解答:‎ 解:(Ⅰ)△ABC的面积为:×4×3=6;‎ ‎(Ⅱ)如图,取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,‎ 与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,‎ 则四边形DEFG即为所求.‎ 故答案为:(Ⅰ)6;(Ⅱ)取格点P,连接PC,过点A画PC的平行线,与BC交于点Q,连接PQ与AC相交得点D,过点D画CB的平行线,与AB相交得点E,分别过点D、E画PC的平行线,与CB相交得点G,F,则四边形DEFG即为所求 点评:‎ 此题考查了作图﹣位似变换,三角形的面积,以及正方形的性质,作出正确的图形是解本题的关键.‎ ‎ ‎ 三、解答题(共8小题,满分66分)‎ 第 11 页 共 11 页 ‎19.(6分)(2013•天津)解不等式组.‎ ‎20.(8分)(2013•天津)已知反比例函数y=(k为常数,k≠0)的图象经过点A(2,3).‎ ‎(Ⅰ)求这个函数的解析式;‎ ‎(Ⅱ)判断点B(﹣1,6),C(3,2)是否在这个函数的图象上,并说明理由;‎ ‎(Ⅲ)当﹣3<x<﹣1时,求y的取值范围.‎ 考点:‎ 待定系数法求反比例函数解析式;反比例函数的性质;反比例函数图象上点的坐标特征.3718684‎ 分析:‎ ‎(1)把点A的坐标代入已知函数解析式,通过方程即可求得k的值.‎ ‎(Ⅱ)只要把点B、C的坐标分别代入函数解析式,横纵坐标坐标之积等于6时,即该点在函数图象上;‎ ‎(Ⅲ)根据反比例函数图象的增减性解答问题.‎ 解答:‎ 解:(Ⅰ)∵反比例函数y=(k为常数,k≠0)的图象经过点A(2,3),‎ ‎∴把点A的坐标代入解析式,得 ‎3=,‎ 解得,k=6,‎ ‎∴这个函数的解析式为:y=;‎ ‎(Ⅱ)∵反比例函数解析式y=,‎ ‎∴6=xy.‎ 分别把点B、C的坐标代入,得 ‎(﹣1)×6=﹣6≠6,则点B不在该函数图象上.‎ ‎3×2=6,则点C中该函数图象上;‎ ‎(Ⅲ)∵当x=﹣3时,y=﹣2,当x=﹣1时,y=﹣6,‎ 又∵k>0,‎ ‎∴当x<0时,y随x的增大而减小,‎ ‎∴当﹣3<x<﹣1时,﹣6<y<﹣2.‎ ‎21.(8分)(2013•天津)四川雅安发生地震后,某校学生会向全校1900名学生发起了“心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:‎ ‎(Ⅰ)本次接受随机抽样调查的学生人数为 50 ,图①中m的值是 32 ;‎ ‎(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;‎ ‎(Ⅲ)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.‎ 第 11 页 共 11 页 解答:‎ 解:(1)根据条形图4+16+12+10+8=50(人),‎ m=100﹣20﹣24﹣16﹣8=32;‎ ‎(2)∵=(5×4+10×16+15×12+20×10+30×8)=16,‎ ‎∴这组数据的平均数为:16,‎ ‎∵在这组样本数据中,10出现次数最多为16次,‎ ‎∴这组数据的众数为:10,‎ ‎∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,‎ ‎∴这组数据的中位数为:(15=15)=15;‎ ‎(3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,‎ ‎∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数比例为32%,有1900×32%=608,‎ ‎∴该校本次活动捐款金额为10元的学生约有608名.‎ 故答案为:50,32.‎ ‎ ‎ ‎22.(8分)(2013•天津)已知直线I与⊙O,AB是⊙O的直径,AD⊥I于点D.‎ ‎(Ⅰ)如图①,当直线I与⊙O相切于点C时,若∠DAC=30°,求∠BAC的大小;‎ ‎(Ⅱ)如图②,当直线I与⊙O相交于点E、F时,若∠DAE=18°,求∠BAF的大小.‎ 考点:‎ 切线的性质;圆周角定理;直线与圆的位置关系.3718684‎ 分析:‎ ‎(Ⅰ)如图①,首先连接OC,根据当直线l与⊙O相切于点C,AD⊥l于点D.易证得OC∥AD,继而可求得∠BAC=∠DAC=30°;‎ ‎(Ⅱ)如图②,连接BF,由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠AFB=90°,由三角形外角的性质,可求得∠AEF的度数,又由圆的内接四边形的性质,求得∠B的度数,继而求得答案.‎ 解答:‎ 解:(Ⅰ)如图①,连接OC,‎ ‎∵直线l与⊙O相切于点C,‎ ‎∴OC⊥l,‎ ‎∵AD⊥l,‎ ‎∴OC∥AD,‎ ‎∴∠OCA=∠DAC,‎ ‎∵OA=OC,‎ ‎∴∠BAC=∠OCA,‎ ‎∴∠BAC=∠DAC=30°;‎ ‎(Ⅱ)如图②,连接BF,‎ ‎∵AB是⊙O的直径,‎ ‎∴∠AFB=90°,‎ ‎∴∠BAF=90°﹣∠B,‎ ‎∴∠AEF=∠ADE+∠DAE=90°+18°=108°,‎ 在⊙O中,四边形ABFE是圆的内接四边形,‎ 第 11 页 共 11 页 ‎∴∠AEF+∠B=180°,‎ ‎∴∠B=180°﹣108°=72°,‎ ‎∴∠BAF=90°﹣∠B=180°﹣72°=18°.‎ ‎ ‎ ‎23.(8分)(2013•天津)天塔是天津市的标志性建筑之一,某校数学兴趣小组要测量天塔的高度,如图,他们在点A处测得天塔最高点C的仰角为45°,再往天塔方向前进至点B处测得最高点C的仰角为54°,AB=112m,根据这个兴趣小组测得的数据,计算天塔的高度CD(tan36°≈0.73,结果保留整数).‎ 考点:‎ 解直角三角形的应用-仰角俯角问题.3718684‎ 分析:‎ 首先根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,在Rt△ACD中,易求得BD=AD﹣AB=CD﹣112;在Rt△BCD中,可得BD=CD•tan36°,即可得CD•tan36°=CD﹣112,继而求得答案.‎ 解答:‎ 解:根据题意得:∠CAD=45°,∠CBD=54°,AB=112m,‎ ‎∵在Rt△ACD中,∠ACD=∠CAD=45°,‎ ‎∴AD=CD,‎ ‎∵AD=AB+BD,‎ ‎∴BD=AD﹣AB=CD﹣112(m),‎ ‎∵在Rt△BCD中,tan∠BCD=,∠BCD=90°﹣∠CBD=36°,‎ ‎∴tan36°=,‎ ‎∴BD=CD•tan36°,‎ ‎∴CD•tan36°=CD﹣112,‎ ‎∴CD=≈≈415(m).‎ 答:天塔的高度CD为:415m.‎ ‎24.(8分)(2013•天津)甲、乙两商场以同样价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90%收费;在乙商场累计购物超过50元后,超出50元的部分按95%收费,设小红在同一商场累计购物x元,其中x>100.‎ ‎(1)根据题题意,填写下表(单位:元)‎ 累计购物 实际花费 ‎130‎ ‎290‎ ‎…‎ x 在甲商场 ‎127‎ ‎…‎ 第 11 页 共 11 页 在乙商场 ‎126‎ ‎…‎ ‎(2)当x取何值时,小红在甲、乙两商场的实际花费相同?‎ ‎(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?‎ 解答:‎ 解:(1)在甲商场:100+(290﹣100)×0.9=271,‎ ‎100+(290﹣100)×0.9x=0.9x+10;‎ 在乙商场:50+(290﹣50)×0.95=278,‎ ‎50+(290﹣50)×0.95x=0.95x+2.5;‎ ‎(2)根据题意得出:‎ ‎0.9x+10=0.95x+2.5,‎ 解得:x=150,‎ ‎∴当x=150时,小红在甲、乙两商场的实际花费相同,‎ ‎(3)由0.9x+10<0.95x+2.5,‎ 解得:x>150,‎ ‎0.9x+10>0.95x+2.5,‎ 解得:x<150,‎ yB=0.95x+50(1﹣95%)=0.95x+2.5,正确;‎ ‎∴当小红累计购物大于150时上没封顶,选择甲商场实际花费少;‎ 当小红累计购物超过100元而不到150元时,在乙商场实际花费少.‎ ‎25.(10分)(2013•天津)在平面直角坐标系中,已知点A(﹣2,0),点B(0,4),点E在OB上,且∠OAE=∠0BA.‎ ‎(Ⅰ)如图①,求点E的坐标;‎ ‎(Ⅱ)如图②,将△AEO沿x轴向右平移得到△A′E′O′,连接A′B、BE′.‎ ‎①设AA′=m,其中0<m<2,试用含m的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;‎ ‎②当A′B+BE′取得最小值时,求点E′的坐标(直接写出结果即可).‎ 解答:‎ 解:(Ⅰ)如图①,∵点A(﹣2,0),点B(0,4),‎ ‎∴OA=2,OB=4.‎ ‎∵∠OAE=∠0BA,∠EOA=∠AOB=90°,‎ ‎∴△OAE∽△OBA,‎ ‎∴=,即=,‎ 解得,OE=1,‎ ‎∴点E的坐标为(0,1);‎ ‎(Ⅱ)①如图②,连接EE′.‎ 由题设知AA′=m(0<m<2),则A′O=2﹣m.‎ 在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2﹣m)2+42=m2﹣4m+20.‎ 第 11 页 共 11 页 ‎∵△A′E′O′是△AEO沿x轴向右平移得到的,‎ ‎∴EE′∥AA′,且EE′=AA′.‎ ‎∴∠BEE′=90°,EE′=m.‎ 又BE=OB﹣OE=3,‎ ‎∴在Rt△BE′E中,BE′2=E′E2+BE2=m2+9,‎ ‎∴A′B2+BE′2=2m2﹣4m+29=2(m﹣1)2+27.‎ 当m=1时,A′B2+BE′2可以取得最小值,此时,点E′的坐标是(1,1).‎ ‎②如图②,过点A作AB′⊥x,并使AB′=BE=3.‎ 易证△AB′A′≌△EBE′,‎ ‎∴B′A=BE′,‎ ‎∴A′B+BE′=A′B+B′A′.‎ 当点B、A′、B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.‎ 易证△AB′A′∽△OBA′,‎ ‎∴==,‎ ‎∴AA′=×2=,‎ ‎∴EE′=AA′=,‎ ‎∴点E′的坐标是(,1).‎ ‎26.(10分)(2013•天津)已知抛物线y1=ax2+bx+c(a≠0)的对称轴是直线l,顶点为点M.若自变量x和函数值y1的部分对应值如下表所示:‎ ‎(Ⅰ)求y1与x之间的函数关系式;‎ ‎(Ⅱ)若经过点T(0,t)作垂直于y轴的直线l′,A为直线l′上的动点,线段AM的垂直平分线交直线l于点B,点B关于直线AM的对称点为P,记P(x,y2).‎ ‎(1)求y2与x之间的函数关系式;‎ ‎(2)当x取任意实数时,若对于同一个x,有y1<y2恒成立,求t的取值范围.‎ x ‎…‎ ‎﹣1‎ ‎0‎ ‎3‎ ‎…‎ y1=ax2+bx+c ‎…‎ ‎0‎ ‎0‎ ‎…‎ 分析:‎ ‎(II)先根据(I)中y1与x之间的函数关系式得出顶点M的坐标.‎ 第 11 页 共 11 页 ‎①记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,由已知得,AM与BP互相垂直平分,故可得出四边形ANMP为菱形,所以PA∥l,再由点P(x,y2)可知点A(x,t)(x≠1),所以PM=PA=|y2﹣t|,过点P作PQ⊥l于点Q,则点Q(1,y2),故QM=|y2﹣3|,PQ=AC=|x﹣1|,在Rt△PQM中,根据勾股定理即可得出y2与x之间的函数关系式,再由当点A与点C重合时,点B与点P重合可得出P点坐标,故可得出y2与x之间的函数关系式;‎ ‎②据题意,借助函数图象:当抛物线y2开口方向向上时,可知6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),由于3>,所以不合题意,当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,求出y1﹣y2的值;若3t﹣11≠0,要使y1<y2恒成立,只要抛物线方向及且顶点(1,)在x轴下方,因为3﹣t<0,只要3t﹣11>0,解得t>,符合题意;若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.‎ 解答:‎ 解:(Ⅰ)∵抛物线经过点(0,),‎ ‎∴c=. ∴y1=ax2+bx+,‎ ‎∵点(﹣1,0)、(3,0)在抛物线y1=ax2+bx+上,‎ ‎∴,解得,‎ ‎∴y1与x之间的函数关系式为:y1=﹣x2+x+;‎ ‎(II)∵y1=﹣x2+x+,‎ ‎∴y1=﹣(x﹣1)2+3,‎ ‎∴直线l为x=1,顶点M(1,3).‎ ‎①由题意得,t≠3,‎ 如图,记直线l与直线l′交于点C(1,t),当点A′与点C不重合时,‎ ‎∵由已知得,AM与BP互相垂直平分,‎ ‎∴四边形ANMP为菱形,‎ ‎∴PA∥l,‎ 又∵点P(x,y2),‎ ‎∴点A(x,t)(x≠1),‎ ‎∴PM=PA=|y2﹣t|,‎ 过点P作PQ⊥l于点Q,则点Q(1,y2),‎ ‎∴QM=|y2﹣3|,PQ=AC=|x﹣1|,‎ 在Rt△PQM中,‎ ‎∵PM2=QM2+PQ2,即(y2﹣t)2=(y2﹣3)2+(x﹣1)2,整理得,y2=(x﹣1)2+,‎ 即y2=x3﹣x+,‎ ‎∵当点A与点C重合时,点B与点P重合,‎ ‎∴P(1,), ∴P点坐标也满足上式,‎ 第 11 页 共 11 页 ‎∴y2与x之间的函数关系式为y2=x3﹣x+(t≠3);‎ ‎②根据题意,借助函数图象:‎ 当抛物线y2开口方向向上时,6﹣2t>0,即t<3时,抛物线y1的顶点M(1,3),抛物线y2的顶点(1,),‎ ‎∵3>,‎ ‎∴不合题意,‎ 当抛物线y2开口方向向下时,6﹣2t<0,即t>3时,‎ y1﹣y2=﹣(x﹣1)2+3﹣[(x﹣1)2+]‎ ‎=(x﹣1)2+,‎ 若3t﹣11≠0,要使y1<y2恒成立,‎ 只要抛物线y=(x﹣1)2+开口方向向下,且顶点(1,)在x轴下方,‎ ‎∵3﹣t<0,只要3t﹣11>0,解得t>,符合题意;‎ 若3t﹣11=0,y1﹣y2=﹣<0,即t=也符合题意.‎ 综上,可以使y1<y2恒成立的t的取值范围是t≥.‎ 第 11 页 共 11 页
查看更多

相关文章

您可能关注的文档