中考数学专题复习教案 全等三角形中动点问题

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

中考数学专题复习教案 全等三角形中动点问题

个性化辅导授课案 教师: 学生: 日期: 星期: 时段: ‎ 课题 全等三角形的动点问题分析讲解 学情分析 ‎.动点一般在中考都是压轴题,步骤不重要,重要的是思路。动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学目标 考点分析 思路:‎ ‎1.利用图形想到三角形全等,相似及三角函数 ‎2.分析题目,了解有几个动点,动点的路程,速度(动点怎么动)‎ ‎3.结合图形和题目,得出已知或能间接求出的数据 ‎4.分情况讨论,把每种可能情况列出来,不要漏 ‎5.动点一般在中考都是压轴题,步骤不重要,重要的是思路 ‎6.动点类题目一般都有好几问,前一问大都是后一问的提示,就像几何探究类题一样,如果后面的题难了,可以反过去看看前面问题的结论 教学 重点 难点 利用熟悉的知识点解决陌生的问题 教学方法 教师引导,自主思考 教学过程 三角形与动点问题 ‎1、如图,在等腰△ACB中,AC=BC=5,AB=8,D为底边AB上一动点(不与点A,B重合),DE⊥AC,DF⊥BC,垂足分别为E,F,则DE+DF= .‎ ‎ ‎ ‎ ‎ ‎2、在边长为2㎝的正方形ABCD中,点Q为BC边的中点,点P为对角线AC上一动点,连接PB、PQ,则△PBQ周长的最小值为____________㎝(结果不取近似值).‎ ‎3、如图,将边长为1的等边△OAP按图示方式,沿x轴正方向连续翻转2019次,点P依次落在点P1,P2,P3,P4,…,P2019的位置.试写出P1,P3,P50,P2019的坐标.‎ ‎ ‎ ‎4、如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE.连接DE、DF、EF.‎ ‎(1)求证:△ADF≌△CEF ‎(2)试证明△DFE是等腰直角三角形 ‎ ‎ ‎5、如图,在等边的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问 ‎(1)在爬行过程中,CD和BE始终相等吗?‎ ‎(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,,求证:‎ ‎(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确 ‎ ‎6、如图1,若△ABC和△ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,△AMN是等边三角形.‎ ‎ (1)当把△ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说明理由;‎ ‎ (2)当△ADE绕A点旋转到图3的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.‎ 图1 图2 图3‎ 图8‎ ‎7、如图,已知中,厘米,厘米,点为的中点.‎ ‎(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.‎ ‎①若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;‎ ‎②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?‎ ‎(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?‎ A Q C D B P ‎8、如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90°,使EF交矩形的外角平分线BF于点F,设C(m,n).‎ ‎(1)若m = n时,如图,求证:EF = AE;‎ ‎(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.‎ x O E B A y C F x O E B A y C F x O E B A y C F ‎9.在中,,点是直线上一点(不与重合),以为一边在的右侧作,使,连接.‎ ‎(1)如图1,当点在线段上,如果,则 度;‎ ‎(2)设,.‎ ‎①如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由;‎ ‎②当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论.‎ A E E A C C D D B B 图1‎ 图2‎ A A 备用图 B C B C 备用图 ‎10.如图, 直线与轴、轴分别交于点,点.点从点出发,以每秒1个单位长度的速度沿→方向运动,点从点出发,以每秒2个单位长度的速度沿→的方向运动.已知点同时出发,当点到达点时,两点同时停止运动, 设运动时间为秒.‎ ‎(1)设四边形MNPQ的面积为,求关于的函数关系式,并写出的取值范围. ‎ ‎(2)当为何值时,与平行?‎ l Qq O M N x y P 教学反思:‎ 三、 本次课后作业:‎ ‎1、如图,为正方形的一条对角线,点为边延长线上的一点,连接,在上取一点,使,过点作于,交于点,连接,交于点,交于点.‎ ‎(1)求证:;‎ ‎(2)求证:‎ ‎ ‎ ‎2、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:‎ ‎(1)当t为何值时,△PBQ是直角三角形?‎ ‎(2)设四边形APQC的面积为y(cm2),求y与t的 关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;‎ ‎ ‎ ‎3、已知:等边三角形的边长为4厘米,长为1厘米的线段在的边上沿方向以1厘米/秒的速度向点运动(运动开始时,点与点重合,点到达点时运动终止),过点分别作边的垂线,与的其它边交于两点,线段运动的时间为秒.‎ ‎(1)线段在运动的过程中,为何值时,四边形恰为矩形?并求出该矩形的面积;‎ ‎(2)线段在运动的过程中,四边形的面积为,运动的时间为.求四边形的面积随运动时间变化的函数关系式,并写出自变量的取值范围.‎ C P Q B A M N ‎ C P Q B A M N ‎C P Q B A M N ‎4、如图,在Rt△ABC中,∠C=90°,AC=12,BC=16,动点P从点A出发沿AC边向点C以每秒3个单位长的速度运动,动点Q从点C出发沿CB边向点B以每秒4个单位长的速度运动.P,Q分别从点A,C同时出发,当其中一点到达端点时,另一点也随之停止运动.在运动过程中,△PCQ关于直线PQ对称的图形是△PDQ.设运动时间为t(秒).‎ ‎(1)设四边形PCQD的面积为y,求y与t的函数关系式;‎ ‎(2)t为何值时,四边形PQBA是梯形?‎ ‎(3)是否存在时刻t,使得PD∥AB?若存在,求出t的值;若不存在,请说明理由;‎ A P C Q B D ‎(4)通过观察、画图或折纸等方法,猜想是否存在时刻t,使得PD⊥AB?若存在,请估计t的值在括号中的哪个时间段内(0≤t≤1;1<t≤2;2<t≤3;3<t≤4);若不存在,请简要说明理由. ‎ ‎5、在中,现有两个动点P、Q分别从点A和点B同时出发,其中点P以1cm/s的速度,沿AC向终点C移动;点Q以1.25cm/s的速度沿BC向终点C移动。过点P作PE∥BC交AD于点E,连结EQ。设动点运动时间为x秒。‎ ‎(1)用含x的代数式表示AE、DE的长度;‎ ‎(2)当点Q在BD(不包括点B、D)上移动时,设的面积为,求与月份 的函数关系式,并写出自变量的取值范围;‎ ‎(3)当为何值时,为直角三角形。‎ ‎6. 如图,在等腰梯形中,∥,,AB=12 cm,CD=6cm , 点从开始沿边向以每秒3cm的速度移动,点从开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。‎ ‎(1)求证:当t=时,四边形是平行四边形;‎ ‎(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;‎ ‎(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。‎ A B C D Q P
查看更多

相关文章

您可能关注的文档