- 2021-05-07 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学—导数专题
导数 (选修2-2P18A7改编)曲线y=在x=处的切线方程为( ) A.y=0 B.y= C.y=-x+ D.y=x 解析 ∵y′=,∴y′|x==-, 当x=时,y=, ∴切线方程为y-=-,即y=-x+. (2016·天津卷)已知函数f(x)=(2x+1)ex,f′(x)为f(x)的导函数,则f′(0)的值为________. 解析 因为f(x)=(2x+1)ex, 所以f′(x)=2ex+(2x+1)ex=(2x+3)ex, 所以f′(0)=3e0=3. (2017·西安月考)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=________. 解析 y′=a-,由题意得y′|x=0=2,即a-1=2, 所以a=3. (2017·威海质检)已知函数f(x)=xln x,若直线l过点(0,-1),并且与曲线y=f(x)相切,则直线l的方程为( ) A.x+y-1=0 B.x-y-1=0 C.x+y+1=0 D.x-y+1=0 解析 ∵点(0,-1)不在曲线f(x)=xln x上, ∴设切点为(x0,y0). 又∵f′(x)=1+ln x,∴ 解得x0=1,y0=0. ∴切点为(1,0),∴f′(1)=1+ln 1=1. ∴直线l的方程为y=x-1,即x-y-1=0. (2015·全国Ⅱ卷)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________. 解析 法一 ∵y=x+ln x,∴y′=1+,y′|x=1=2. ∴曲线y=x+ln x在点(1,1)处的切线方程为y-1=2(x-1),即y=2x-1. ∵y=2x-1与曲线y=ax2+(a+2)x+1相切, ∴a≠0(当a=0时曲线变为y=2x+1与已知直线平行). 由消去y,得ax2+ax+2=0. 由Δ=a2-8a=0,解得a=8. 法二 同法一得切线方程为y=2x-1. 设y=2x-1与曲线y=ax2+(a+2)x+1相切于点(x0,ax+(a+2)x0+1). ∵y′=2ax+(a+2),∴y′|x=x0=2ax0+(a+2). 由解得 答案 8 (2017·西安质测)曲线f(x)=x3-x+3在点P处的切线平行于直线y=2x-1,则P点的坐标为( ) A.(1,3) B.(-1,3) C.(1,3)和(-1,3) D.(1,-3) 解析 f′(x)=3x2-1,令f′(x)=2,则3x2-1=2,解得x=1或x=-1,∴P(1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y=2x-1上,故选C. (2015·天津卷)已知函数f(x)=axln x,x∈(0,+∞),其中a为实数,f′(x)为f(x)的导函数,若f′(1)=3,则a的值为________. 解析 f′(x)=a=a(1+ln x),由于f′(1)=a(1+ln 1)=a,又f′(1)=3,所以a=3. (2016·全国Ⅲ卷)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________. 解析 设x>0,则-x<0,f(-x)=ln x-3x,又f(x)为偶函数,f(x)=ln x-3x, f′(x)=-3,f′(1)=-2,切线方程为y=-2x-1. 答案 2x+y+1=0 (2015·陕西卷)设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P处的切线垂直,则P的坐标为________. 解析 y′=ex,曲线y=ex在点(0,1) 处的切线的斜率k1=e0=1,设P(m,n),y=(x>0)的导数为y′=-(x>0),曲线y=(x>0)在点P处的切线斜率k2=-(m>0),因为两切线垂直,所以k1k2=-1,所以m=1,n=1,则点P的坐标为(1,1). 答案 (1,1) (2016·北京卷)设函数f(x)=xea-x+bx,曲线y=f(x)在点(2,f(2))处的切线方程为y=(e-1)x+4. (1)求a,b的值; (2)求f(x)的单调区间. 解 (1)∵f(x)=xea-x+bx,∴f′(x)=(1-x)ea-x+b. 由题意得即 解得a=2,b=e. (2)由(1)得f(x)=xe2-x+ex, 由f′(x)=e2-x(1-x+ex-1)及e2-x>0知,f′(x)与1-x+ex-1同号. 令g(x)=1-x+ex-1,则g′(x)=-1+ex-1. 当x∈(-∞,1)时,g′(x)<0,g(x)在(-∞,1)上递减; 当x∈(1,+∞)时,g′(x)>0,g(x)在(1,+∞)上递增, ∴g(x)≥g(1)=1在R上恒成立, ∴f′(x)>0在R上恒成立. ∴f(x)的单调递增区间为(-∞,+∞). (2016·四川卷)已知a为函数f(x)=x3-12x的极小值点,则a=( ) A.-4 B.-2 C.4 D.2 解析 f′(x)=3x2-12,∴x<-2时,f′(x)>0,-2查看更多