- 2021-04-28 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学总复习经典测试题解析版127正态分布
12.7 正态分布 一、选择题 1.已知随机变量X服从正态分布N(3,1),且P(2≤X≤4)=0.6826,则P(X>4)=( ) A.0.1588 B.0.1587 C.0.1586 D.0.1585 解析 通过正态分布对称性及已知条件得 P(X>4)===0.1587,故选B. 答案 B 2. 设随机变量服从正态分布 ,则函数不存在零点的概率为( ) A. B. C. D. 解析 函数不存在零点,则 因为,所以 答案 C 3.以Φ(x)表示标准正态总体在区间(-∞,x)内取值的概率,若随机变量ξ服从正态分布N(μ,σ2),则概率P(|ξ-μ|<σ)等于( ). A.Φ(μ+σ)-Φ(μ-σ) B.Φ(1)-Φ(-1) C.Φ D.2Φ(μ+σ) 解析 由题意得,P(|ξ-μ|<σ)=P=Φ(1)-Φ(-1). 答案 B 4.已知随机变量X~N(3,22),若X=2η+3,则D(η)等于( ). A.0 B.1 C.2 D.4 解析 由X=2η+3,得D(X)=4D(η),而D(X)=σ2=4,∴D(η)=1. 答案 B 5.标准正态总体在区间(-3,3)内取值的概率为( ). A.0.998 7 B.0.997 4 C.0.944 D.0.841 3 解析 标准正态分布N(0,1),σ=1,区间(-3,3),即(-3σ,3σ),概率 P=0.997 4. 答案 B 6.已知三个正态分布密度函数φi(x)=e-(x∈R,i=1,2,3)的图象如图所示,则( ). A.μ1<μ2=μ3,σ1=σ2>σ3 B.μ1>μ2=μ3,σ1=σ2<σ3 C.μ1=μ2<μ3,σ1<σ2=σ3 D.μ1<μ2=μ3,σ1=σ2<σ3 解析 正态分布密度函数φ2(x)和φ3(x)的图象都是关于同一条直线对称,所以其平均数相同,故μ2=μ3,又φ2(x)的对称轴的横坐标值比φ1(x)的对称轴的横坐标值大,故有μ1<μ2=μ3.又σ越大,曲线越“矮胖”,σ越小,曲线越“瘦高”,由图象可知,正态分布密度函数φ1(x)和φ2(x)的图象一样“瘦高”,φ3(x)明显“矮胖”,从而可知σ1=σ2<σ3. 答案 D 7.在正态分布N中,数值前在(-∞,-1)∪(1,+∞)内的概率为( ). A.0.097 B.0.046 C.0.03 D.0.0026 解析 ∵μ=0,σ= ∴P(X<1或x>1)=1-P(-1≤x≤1)=1-P(μ-3σ≤X≤μ+3σ)=1-0.997 4=0.002 6. 答案 D 二、填空题 8. 随机变量ξ服从正态分布N(1,σ2),已知P(ξ<0)=0.3,则P(ξ<2)=________. 答案 0.7 9.某班有50名学生,一次考试后数学成绩ξ(ξ∈N)服从正态分布N(100,102),已知P(90≤ξ≤100)=0.3,估计该班学生数学成绩在110分以上的人数为________. 解析 由题意知,P(ξ>110)==0.2,∴该班学生数学成绩在110分以上的人数为0.2×50=10. 答案 10 10.在某项测量中,测量结果X服从正态分布N(1,σ2)(σ>0).若X在(0,1)内取值的概率为0.4,则X在(0,2)内取值的概率为________. 解析 ∵X服从正态分布(1,σ2),∴X在(0,1)与(1,2)内取值的概率相同均为0.4.∴X在(0,2)内取值概率为0.4+0.4=0.8 答案 0.8 11.设随机变量ξ服从正态分布N(0,1),记Ф(x)=P(ξ<x),给出下列结论: ①Φ(0)=0.5; ②Φ(x)=1-Φ(-x);③P(|ξ|<2)=2Φ(2)-1. 则正确结论的序号是________. 答案 ①②③ 12.商场经营的某种包装大米的质量(单位:kg)服从正态分布X~N(10,0.12),任选一袋这种大米,质量在9.8~10.2 kg的概率是________. 解析 P(9.8查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档