- 2021-04-25 发布 |
- 37.5 KB |
- 18页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学题型及方法总结
初中数学中的固定题型及惯性思维 一、 角平分线的考点 1.定义 2.性质 (垂直于角的两边) 3.对称性(垂直于角平分线,构造全等,得到中点) 二、 中点的三个考点 1.斜边中线(直角与中点) 2.三线合一(等腰与中点) 3.中位线(两个中点) 附注:中点常见作辅助线方法:过其中一个端点作另一个端点所在直线的平行线交延长线与一点。如果其中一个端点所在直线有多条,要结合题目已知条件进行判断,一般以已知线段长度的为主。 三、 等腰三角形的考点 1.等角对等边 2.等边对等角 3.三线合一 四、 全等三角形 1.五个全等三角形的判定定理 2.对应边对应角相等 五、 轴对称图形 1.角的对称性(性质) 2.线段的对称性(性质) 3.等腰三角形的对称性(三线合一) 附注:对称轴是直线,轴对称图形既可以是一个图形本身,比如等腰三角形是轴对称图形,也可以说两个图形关于某条直线呈轴对称图形。 六、 勾股定理 1.勾股定理的公式 2.勾股定理的逆定理(可以用来证明直角或者一个三角形是直角三角形) 附注:利用图形证明勾股定理一般都是利用部分面积之和等于整体面积,另外记住几组常见的勾股数,3,4,5; 6,8,10; 5,12,13; 7,24,25 七、 平面直角坐标系 1.平面直角坐标系是用来确定点及图像的位置的 2.坐标轴及象限的划分 附注:如果题目说不经过第二象限,应该有两种情况,一是经过一三四象限,二是经过一三象限,做此类题目不要思维定势。 八、 二次根式 1.二次根式的非负性 2.同类二次根式 3.最简二次根式 4.二次根式的比较大小 5.二次根式的加减乘除 附注:如果题目的计算结果包含根式,一定要习惯性地判断是否是最简二次根式,切记因为细节问题失分;另外代数式有意义也要注意开方数大于等于0,千万不要漏掉等号。 九、 一元二次方程 1.定义(二次项系数不为0) 2.四种解法(优先考虑因式分解法,主要是十字相乘) 3.一元二次方程根的个数的判别式 4.一元二次方程根与系数的关系,即韦达定理 附注:只要一个题目是求解有关一元二次方程的根的代数式的值的题目,只有两种方法,代入法与韦达定理,如果满足韦达定理的形式就用韦达定理,除此之外,一律使用代入法。 十、 二次函数 1.定义(最高次为2,二次项系数不为0) 2.二次函数的图像(开口、与X轴的交点、对称轴、顶点坐标、与Y轴的交点位置) 3.二次函数的增减性 4.二次函数的动点问题 附注:初中阶段所有函数的知识点都比较少,更多的是知识点的迁移变化与综合应用。 十一、 分式方程 1.分式方程的定义(有可能考选择题) 2.分式方程的解的情况 3.已知分式方程的解的情况,求未知实数的取值范围 附注:1.增根是分式方程无解的特殊情况 2.如果告诉分式方程的解为负数,解出X之后,一方面x<0,另外千万不要忘记x不能等于增根,这个是比较容易出错的一个点。 十二、 圆 1.相关定义,比如直径、圆心、弦、切线、弧、圆周角、圆心角等等 2.切线长定理 3.垂径定理 直径:直径所对圆周角是90度 角:同弧所对圆周角相等,同弧所对圆周角是圆心角的一半 弦:垂径定理 弧长相等:弦相等 切线:连接圆心与切点 内接四边形:对角互补 附注:在圆中要记住有很多等腰三角形,另外也经常跟全等和相似结合在一起。 数学题目中的常见突破口及惯性思维 1. 中点(考点及作辅助线方法相对比较固定) 2. 角平分线(处理方法如上述总结) 3. 直角(直角一般跟斜边中线、勾股定理、相似、等量代换结合起来) 4. 平行(同位角、内错角、同旁内角) 5. 出现比例线段或者乘积形式(相似) 6. 等腰直角三角形、正方形、等边三角形中出现勾股线段或者等差线段,使用旋转法 7. A型、K型、L型(K型)、X型、Z型(X型)相似 1. 反比例函数中出现成比例线段(关联点坐标) 2. 正方形(跟等腰直角三角形结合起来,因为比较容易构造) 3. 一题多解(等腰三角形要分腰与底;直角三角形要分斜边与直角边;平行四边形要分边与对角线;相似要分哪两条线段对应成比例) 4. 分类依据(不同图形的分类依据不同,这里不作细述) 5. 求线段长度或者角的大小,在不知线段如何表示的情况下,要习惯性地假设未知数 中考数学题型总结 1.已知点,都在直线上,则 与的大小关系是 (A) (B) (C) (D)不能比较 比较函数值大小,两种方法:1.直接求解函数值再进行比较2.利用数形结合法,通过函数图像直观地看出函数值大小。 2.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为 A.1.738×106 B.1.738×107 C.0.1738×107 D.17.38×105 科学计数法,记住形式:a*10^n(1=查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档