- 2021-04-22 发布 |
- 37.5 KB |
- 35页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年黑龙江省绥化市中考数学试卷
2019年黑龙江省绥化市中考数学试卷 一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑 1.(3分)我们的祖国地域辽阔,其中领水面积约为.把370000这个数用科学记数法表示为 A. B. C. D. 2.(3分)下列图形中,属于中心对称图形的是 A. B. C. D. 3.(3分)下列计算正确的是 A. B. C. D. 4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是 A.球体 B.圆锥 C.圆柱 D.正方体 5.(3分)下列因式分解正确的是 A. B. C. D. 6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是 A. B. C. D. 7.(3分)下列命题是假命题的是 A.三角形两边的和大于第三边 B.正六边形的每个中心角都等于 C.半径为的圆内接正方形的边长等于 D.只有正方形的外角和等于 8.(3分)小明去商店购买、两种玩具,共用了10元钱,种玩具每件1元,种玩具每件2元.若每种玩具至少买一件,且种玩具的数量多于种玩具的数量.则小明的购买方案有 A.5种 B.4种 C.3种 D.2种 9.(3分)不等式组的解集在数轴上表示正确的是 A. B. C. D. 10.(3分)如图,在正方形中,、是对角线上的两个动点,是正方形四边上的任意一点,且,,设.当是等腰三角形时,下列关于点个数的说法中,一定正确的是 ①当(即、两点重合)时,点有6个 ②当时,点最多有9个 ③当点有8个时, ④当是等边三角形时,点有4个 A.①③ B.①④ C.②④ D.②③ 二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内 11.(3分)某年一月份,哈尔滨市的平均气温约为,绥化市的平均气温约为,则两地的温差为 . 12.(3分)若分式有意义,则的取值范围是 . 13.(3分)计算: . 14.(3分)已知数据1,3,5,7,9,则这组数据的方差是 . 15.(3分)当时,代数式的值是 . 16.(3分)用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 . 17.(3分)已知在中,,点在上,且,则 度. 18.(3分)一次函数与反比例函数的图象如图所示,当时,自变量的取值范围是 . 19.(3分)甲、乙两辆汽车同时从地出发,开往相距的地,甲、乙两车的速度之比是,结果乙车比甲车早30分钟到达地,则甲车的速度为 . 20.(3分)半径为5的是锐角三角形的外接圆,,连接、,延长交弦于点.若是直角三角形,则弦的长为 .[来源:学_科_网Z_X_X_K] 21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边 “”的路线运动,设第秒运动到点为正整数),则点的坐标是 . 三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内 22.(6分)如图,已知三个顶点的坐标分别为,, (1)请在网格中,画出线段关于原点对称的线段; (2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标; (3)若另有一点,连接,则 . 23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:.读书看报;.健身活动;.做家务;.外出游玩;.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的. 请根据图中的信息解答下列问题: (1)本次调查的总人数是 人; (2)补全条形统计图; (3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人? 24.(6分)按要求解答下列各题: (1)如图①,求作一点,使点到的两边的距离相等,且在的边上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明); (2)如图②,、表示两个港口,港口在港口的正东方向上.海上有一小岛在港口的北偏东方向上,且在港口的北偏西方向上.测得海里,求小岛与港口之间的距离.(结果可保留根号) 25.(6分)已知关于的方程有实数根. (1)求的取值范围; (2)若该方程有两个实数根,分别为和,当时,求的值. 26.(7分)如图,为的直径,平分,交弦于点,连接半径交于点,过点的一条直线交的延长线于点,. (1)求证:直线是的切线; (2)若. ①求的长; ②求的周长.(结果可保留根号) 27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个与甲加工时间之间的函数图象为折线,如图所示. (1)这批零件一共有 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件; (2)当时,求与之间的函数解析式; (3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等? 28.(9分)如图①,在正方形中,,为对角线上任意一点(不与、重合),连接,过点作,交线段于点 (1)求证:; (2)若,求证:; (3)如图②,连接交于点.若,求的值. 29.(10分)已知抛物线的对称轴为直线,交轴于点、,交轴于点,且点坐标为.直线与抛物线交于点、(点在点的右边),交轴于点. (1)求该抛物线的解析式; (2)若,且的面积为3,求的值; (3)当时,若,直线交轴于点.设的面积为,求与之间的函数解析式. 2019年黑龙江省绥化市中考数学试卷 参考答案与试题解析 一、单项选择题(本题共10个小题,每小题3分,共30分)请在答题卡上用2B铅笔将你的选项所对应的大写字母涂黑 1.(3分)我们的祖国地域辽阔,其中领水面积约为.把370000这个数用科学记数法表示为 A. B. C. D. 【考点】:科学记数法表示较大的数 【分析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数. 【解答】解:370000用科学记数法表示应为, 故选:. 【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值. 2.(3分)下列图形中,属于中心对称图形的是 A. B. C. D. 【考点】:中心对称图形 【分析】根据中心对称图形的概念求解. 【解答】解:、不是中心对称图形,故此选项错误; 、不是中心对称图形,故此选项错误; 、是中心对称图形,故此选项正确; 、不是中心对称图形,故此选项错误, 故选:. 【点评】本题主要考查了中心对称图形的概念,中心对称图形关键是要寻找对称中心,图形旋转后与原图重合. 3.(3分)下列计算正确的是 A. B. C. D. 【考点】22:算术平方根;24:立方根;:零指数幂 【分析】直接利用二次根式的性质以及立方根的性质分别化简得出答案. 【解答】解:、,故此选项错误; 、,故此选项错误; 、无法计算,故此选项错误; 、,正确. 故选:. 【点评】此题主要考查了立方根、零指数幂的性质,正确化简各数是解题关键. 4.(3分)若一个几何体的主视图、俯视图、左视图都是半径相等的圆,则这个几何体是 A.球体 B.圆锥 C.圆柱 D.正方体 【考点】:简单几何体的三视图;:由三视图判断几何体 【分析】利用三视图都是圆,则可得出几何体的形状. 【解答】解:主视图、俯视图和左视图都是圆的几何体是球体. 故选:. 【点评】本题考查了由三视图确定几何体的形状,学生的思考能力和对几何体三种视图的空间想象能力. 5.(3分)下列因式分解正确的是 A. B. C. D. 【考点】57:因式分解十字相乘法等;55:提公因式法与公式法的综合运用 【分析】、原式提取公因式得到结果,即可做出判断; 、原式利用十字相乘法分解得到结果,即可做出判断; 、等式左边表示完全平方式,不能利用完全平方公式分解; 、原式利用平方差公式分解得到结果,即可做出判断. 【解答】解:、原式,错误; 、原式,错误; 、,不能分解因式,错误; 、原式,正确. 故选:. 【点评】此题考查了提公因式法、十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键. 6.(3分)不透明袋子中有2个红球和4个蓝球,这些球除颜色外无其他差别,从袋子中随机取出1个球是红球的概率是 A. B. C. D. 【考点】:概率公式 【分析】直接利用概率公式求解. 【解答】解:从袋子中随机取出1个球是红球的概率. 故选:. 【点评】本题考查了概率公式:随机事件的概率(A)事件可能出现的结果数除以所有可能出现的结果数. 7.(3分)下列命题是假命题的是 A.三角形两边的和大于第三边 B.正六边形的每个中心角都等于 C.半径为的圆内接正方形的边长等于 D.只有正方形的外角和等于 【考点】:命题与定理 【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项. 【解答】解:、三角形两边的和大于第三边,正确,是真命题; 、正六边形的每个中心角都等于,正确,是真命题; 、半径为的圆内接正方形的边长等于,正确,是真命题; 、所有多边形的外角和均为,故错误,是假命题, 故选:. 【点评】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和等知识,难度不大. 8.(3分)小明去商店购买、两种玩具,共用了10元钱,种玩具每件1元,种玩具每件2元.若每种玩具至少买一件,且种玩具的数量多于种玩具的数量.则小明的购买方案有 A.5种 B.4种 C.3种 D.2种 【考点】:一元一次不等式组的应用 【分析】设小明购买了种玩具件,则购买的种玩具为件,根据题意列出不等式组进行解答便可. 【解答】解:设小明购买了种玩具件,则购买的种玩具为件,根据题意得, , 解得,, 为整数, 或2或3, 有3种购买方案. 故选:. 【点评】本题主要考查了一元一次不等式组的应用题,正确表示出购买种玩具的数量和正确列出不等式组是解决本题的关键所在. 9.(3分)不等式组的解集在数轴上表示正确的是 A. B. C. D. 【考点】:在数轴上表示不等式的解集;:解一元一次不等式组 【分析】首先解每个不等式,然后把每个不等式用数轴表示即可.[来源:学科网ZXXK] 【解答】解:, 解①得, 解②得, 利用数轴表示为: . 故选:. 【点评】此题主要考查了解不等式组,以及在数轴上表示解集,不等式的解集在数轴上表示出来的方法:“”空心圆点向右画折线,“”实心圆点向右画折线,“”空心圆点向左画折线,“”实心圆点向左画折线. 10.(3分)如图,在正方形中,、是对角线上的两个动点,是正方形四边上的任意一点,且,,设.当是等腰三角形时,下列关于点个数的说法中,一定正确的是 ①当(即、两点重合)时,点有6个 ②当时,点最多有9个 ③当点有8个时, ④当是等边三角形时,点有4个 A.①③ B.①④ C.②④ D.②③ 【考点】:等腰三角形的性质;:等边三角形的判定与性质;:正方形的性质 【分析】利用图象法对各个说法进行分析判断,即可解决问题. 【解答】解:①如图1, 当(即、两点重合)时,点有6个; 故①正确; ②当时,点最多有8个. 故②错误. ③当点有8个时,如图2所示: 当或或或时, 点有8个; 故③错误; ④如图3, 当是等边三角形时, 点有4个; 故④正确; 当是等腰三角形时,关于点个数的说法中, 不正确的是②③, 一定正确的是①④; 故选:. 【点评】本题考查正方形的性质、等腰三角形的判定和性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,有一定难度. 二、填空题(本题共11个小题,每小题3分,共33分)请在答题卡上把你的答案写在相对应的题号后的指定区域内 11.(3分)某年一月份,哈尔滨市的平均气温约为,绥化市的平均气温约为,则两地的温差为 3 . 【考点】:有理数的减法 【分析】用哈尔滨市的平均气温减去绥化市的平均气温,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解. 【解答】解:. 故答案为3. 【点评】本题考查了有理数的减法,熟记减去一个数等于加上这个数的相反数是解题的关键. 12.(3分)若分式有意义,则的取值范围是 . 【考点】62:分式有意义的条件 【分析】分式有意义,分母不等于零. 【解答】解:依题意得:. 解得. 故答案是:. 【点评】考查了分式有意义的条件.分式有意义的条件是分母不等于零. 13.(3分)计算: . 【考点】47:幂的乘方与积的乘方;48:同底数幂的除法 【分析】直接利用积的乘方运算法则化简,再利用整式的除法运算法则计算得出答案. 【解答】解:. 故答案为:. 【点评】此题主要考查了积的乘方运算以及整式的除法运算,正确掌握相关运算法则是解题关键. 14.(3分)已知数据1,3,5,7,9,则这组数据的方差是 8 . 【考点】:方差 【分析】先计算出平均数,再根据方差公式计算即可. 【解答】解:、3、5、7、9的平均数是, 方差; 故答案为:8. 【点评】本题考查方差的定义与意义:一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 15.(3分)当时,代数式的值是 2019 . 【考点】:分式的化简求值 【分析】根据分式的减法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.[来源:学§科§网] 【解答】解: , 当时,原式, 故答案为:2019. 【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法. 16.(3分)用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于4,则这个圆锥的母线长为 12 . 【考点】:圆锥的计算 【分析】根据底面周长等于圆锥的侧面展开扇形的弧长列式计算即可. 【解答】解:设圆锥的母线长为, 根据题意得:, 解得:, 故答案为:12. 【点评】考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长. 17.(3分)已知在中,,点在上,且,则 36 度. 【考点】:等腰三角形的性质 【分析】已知有许多线段相等,根据等边对等角及三角形外角的性质得到许多角相等,再利用三角形内角和列式求解即可. 【解答】解:设 , , , 在中 . 故填36. 【点评】本题考查了等腰三角形的性质及三角形内角和定理;根据三角形的边的关系,转化为角之间的关系,从而利用方程求解是正确解答本题的关键. 18.(3分)一次函数与反比例函数的图象如图所示,当时,自变量的取值范围是 . 【考点】:反比例函数与一次函数的交点问题 【分析】利用两函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可. 【解答】解:当时,. 故答案为. 【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点. 19.(3分)甲、乙两辆汽车同时从地出发,开往相距的地,甲、乙两车的速度之比是,结果乙车比甲车早30分钟到达地,则甲车的速度为 80 . 【考点】:分式方程的应用 【分析】设甲车的速度为,则乙车的速度为,根据时间路程速度结合乙车比甲车早30分钟到达地,即可得出关于的分式方程,解之经检验后即可得出结论. 【解答】解:设甲车的速度为,则乙车的速度为, 依题意,得:, 解得:, 经检验,是原方程的解,且符合题意. 故答案为:80. 【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 20.(3分)半径为5的是锐角三角形的外接圆,,连接、,延长交弦于点.若是直角三角形,则弦的长为 或 . 【考点】:勾股定理;:等腰三角形的性质;:三角形的外接圆与外心 【分析】如图1,当时,推出是等边三角形,解直角三角形得到,如图2,当,推出是等腰直角三角形,于是得到. 【解答】解:如图1,当时, 即, , , , 是等边三角形, , , , , 如图2,当, , 是等腰直角三角形, , 综上所述:若是直角三角形,则弦的长为或, 故答案为:或. 【点评】本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键. 21.(3分)在平面直角坐标系中,若干个边长为1个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒1个单位长度的速度沿着等边三角形的边“”的路线运动,设第秒运动到点为正整数),则点的坐标是 , . 【考点】:规律型:点的坐标 【分析】通过观察可知,纵坐标每6个进行循环,先求出前面6 个点的坐标,从中得出规律,再按规律写出结果便可. 【解答】解:由题意知, , , , , 由上可知,每个点的横坐标为序号的一半,纵坐标每6个点依次为:,0,,0,这样循环, ,, 故答案为:,. 【点评】本题是一个规律题,根据题意求出点的坐标,从中找出规律来,这是解题的关键所在. 三、解答题(本题共8个小题,共57分)请在答题卡上把你的答案写在相对应的题号后的指定区域内 22.(6分)如图,已知三个顶点的坐标分别为,, (1)请在网格中,画出线段关于原点对称的线段; (2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标; (3)若另有一点,连接,则 1 . 【考点】:作图旋转变换;:解直角三角形 【分析】(1)根据坐标画得到对应点、,连接即可; (2)取的中点画出直线, (3)得出为等腰直角三角形,,可求出[来源:Zxxk.Com] 【解答】解:如图: (1)作出线段、连接即可; (2)画出直线,点坐标为, (3)连接,,, , 为等腰直角三角形, , , 故答案为1. 【点评】本题考查关于原点对称的点的坐标关系,三角形中线的性质,三角函数值等有关知识点. 23.(6分)小明为了了解本校学生的假期活动方式,随机对本校的部分学生进行了调查.收集整理数据后,小明将假期活动方式分为五类:.读书看报;.健身活动;.做家务;.外出游玩;.其他方式,并绘制了不完整的统计图如图.统计后发现“做家务”的学生人数占调查总人数的. 请根据图中的信息解答下列问题: (1)本次调查的总人数是 40 人; (2)补全条形统计图; (3)根据调查结果,估计本校2360名学生中“假期活动方式”是“读书看报”的有多少人? 【考点】:用样本估计总体;:条形统计图 【分析】(1)由方式的人数及其所占百分比可得总人数; (2)根据各方式的人数之和等于总人数可得人数,从而补全图形; (3)利用样本估计总体思想求解可得. 【解答】解:(1)本次调查的总人数是(人, 故答案为:40; (2)活动方式的人数为(人, 补全图形如下: (3)估计本校2360名学生中“假期活动方式”是“读书看报”的有(人. 【点评】本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据. 24.(6分)按要求解答下列各题: (1)如图①,求作一点,使点到的两边的距离相等,且在的边上.(用直尺和圆规作图,保留作图痕迹,不写作法和证明); (2)如图②,、表示两个港口,港口在港口的正东方向上.海上有一小岛在港口的北偏东方向上,且在港口的北偏西方向上.测得海里,求小岛与港口之间的距离.(结果可保留根号) 【考点】:作图应用与设计作图;:解直角三角形的应用方向角问题;:角平分线的性质 【分析】(1)利用尺规作的角平分线交于点,点即为所求. (2)作于.解直角三角形求出,再利用等腰直角三角形的性质即可解决问题. 【解答】解:(1)如图,点即为所求. (2)作于. 在中,海里,, (海里), , (海里). 答:小岛与港口之间的距离为海里.[来源:Z.xx.k.Com] 【点评】本题考查则有应用与设计,角平分线的性质,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 25.(6分)已知关于的方程有实数根. (1)求的取值范围; (2)若该方程有两个实数根,分别为和,当时,求的值. 【考点】:根与系数的关系;:一元二次方程的定义;:根的判别式 【分析】(1)分及两种情况考虑:当时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出符合题意;当时,由根的判别式△可得出关于的一元一次不等式,解之即可得出的取值范围.综上,此问得解; (2)利用根与系数的关系可得出,,结合可得出关于的分式方程,解之经检验后即可得出结论. 【解答】解:(1)当时,原方程为, 解得:, 符合题意; 当时,原方程为一元二次方程, 该一元二次方程有实数根, △, 解得:. 综上所述,的取值范围为. (2)和是方程的两个根, ,. , , 解得:, 经检验,是分式方程的解,且符合题意. 的值为1. 【点评】本题考查了根的判别式、根与系数的关系、一元二次方程的定义、解一元一次方程以及解分式方程,解题的关键是:(1)分及两种情况,找出的取值范围;(2)利用根与系数的关系结合,找出关于的分式方程. 26.(7分)如图,为的直径,平分,交弦于点,连接半径交于点,过点的一条直线交的延长线于点,. (1)求证:直线是的切线; (2)若. ①求的长; ②求的周长.(结果可保留根号) 【考点】:相似三角形的判定与性质;:勾股定理;:圆周角定理;:切线的判定与性质 【分析】(1)根据圆周角定理,垂径定理,平行线的性质证得,即可证得结论; (2)①利用勾股定理求得半径,进而求得,根据三角形中位线定理即可求得; ②由平行线分线段成比例定理得到,求得,,即可求得,然后根据勾股定理求得,即可求得三角形的周长. 【解答】(1)证明:平分, , 是弧的中点 . , ,, , , , 是半径, 是圆切线; (2)解:①设. , ,. , 在中. 解得. , 由(1)得,,, ; ②连接. , , ,, ,, , 在中,,, . 是直径, 为直角三角形. . 周长. 【点评】本题考查了切线的判定和性质,圆周角定理,垂径定理,勾股定理的应用,平行线分线段成比例定理,三角形中位线定理等,熟练掌握性质定理是解题的关键. 27.(7分)甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数(个与甲加工时间之间的函数图象为折线,如图所示. (1)这批零件一共有 270 个,甲机器每小时加工 个零件,乙机器排除故障后每小时加工 个零件; (2)当时,求与之间的函数解析式; (3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等? 【考点】:一次函数的应用 【分析】(1)根据图象解答即可; (2)设当时,与之间的函数关系是为,运用待定系数法求解即可; (3)设甲价格小时时,甲乙加工的零件个数相等,分两种情况列方程解答:①当时,;②当时,. 【解答】解:(1)这批零件一共有270个, 甲机器每小时加工零件:(个, 乙机器排除故障后每小时加工零件:(个; 故答案为:270;20;40; (2)设当时,与之间的函数关系是为, 把,代入解析式,得 ,解得, ; (3)设甲价格小时时,甲乙加工的零件个数相等, ①,解得; ②, ,解得, 答:甲加工或时,甲与乙加工的零件个数相等. 【点评】此题主要考查了一次函数的应用,根据题意得出函数关系式以及数形结合是解决问题的关键. 28.(9分)如图①,在正方形中,,为对角线上任意一点(不与、重合),连接,过点作,交线段于点 (1)求证:; (2)若,求证:; (3)如图②,连接交于点.若,求的值. 【考点】:相似形综合题 【分析】(1)作、,证四边形是正方形得,再证,从而得,据此可得证; (2)由,知,据此得,,由知,,,从而得出答案; (3)把绕点逆时针旋转得到,连接,先证得,由可设,则,继而知,,由得,知,,证得,从而得出答案. 【解答】解:(1)如图①,过分别作交于,交于, 则四边形是平行四边形, 四边形是正方形, ,, , 平行四边形是正方形, , , , , , , ; (2)由(1)得,, , ,, , , ,, ; (3)如图②,把绕点逆时针旋转得到,连接, ,, ,,,, ,, ,, 是等腰直角三角形, , , , , , 设,则, 在中,,则, 正方形的边长为6, , , , ,, ,, , , . 【点评】 本题是相似三角形的综合问题,解题的关键是掌握正方形的判定与性质、等腰直角三角形的判定与性质及相似三角形的判定与性质等知识点. 29.(10分)已知抛物线的对称轴为直线,交轴于点、,交轴于点,且点坐标为.直线与抛物线交于点、(点在点的右边),交轴于点. (1)求该抛物线的解析式; (2)若,且的面积为3,求的值; (3)当时,若,直线交轴于点.设的面积为,求与之间的函数解析式. 【考点】:二次函数综合题 【分析】(1)将点代入解析式,对称轴为,联立即可求与的值; (2)设点横坐标,点的横坐标,则有,联立,根据韦达定理可得,,由面积之间的关系:,可求的值; (3)当时,解析式为,联立有:,解得或;由条件可得,,,所以有; ①当时,,, ②当时,,, ③当时,如图③,有,, 【解答】解:(1)将点代入解析式,得, , ,; ; (2)设点横坐标,点的横坐标,则有, 把代入, , 联立,得: , , ,, 的面积为3; , 即, , , , 或, , ; (3)当时,解析式为, , 与相交于点与, , 或, 当时,有, 点在点的右边, ,, 的直线解析式为, , , ①当时,如图①,, , ②当时,如图②,, , ③当时,如图③,有, ,,, , 综上所述,; 【点评】本题是二次函数的综合题;熟练掌握二次函数的图象及性质,数形结合,分类讨论是解题的主要思想. 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/8/3 9:14:39;用户:学无止境;邮箱:419793282@qq.com;学号:7910509查看更多