- 2021-04-21 发布 |
- 37.5 KB |
- 23页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【物理】2019届一轮复习人教版动量、冲量、动量定理学案
高 考地 位 高考对本章的考查主要以碰撞为模型对动量守恒定律进 行考查,而且注意与生活中的具体事例相联系,题型主要以 选择题、计算题为主,计算题往往与其他知识综合,难度不 会太大,分值 6~9 分。 考 纲下 载 1.动量、动量定理 (Ⅱ) 2.动量守恒定律及 其应用 (Ⅱ) 3.弹性碰撞和非弹 性碰撞 (Ⅰ) 实验七:验证动量守 恒定律 说明:只限于一维两 个物体的碰撞问题。 考 纲解 读 1.理解动量、动量的变 化量、冲量等概念,掌握动 量定理、动量守恒定律,并 能用动量守恒定律解决相 关问题。 2.掌握弹性碰撞和非 弹性碰撞的概念,记住两个 物体碰撞的几个基本公式, 能运用动量守恒定律并结 合能量关系解决简单的碰 撞问题。 3.高考中对本专题的 考查方式主要有两种:(1) 以碰撞为模型考查动量守 恒定律的应用;(2)以生活 中的实例为背景,考查规律 的灵活运用。 第 1 讲 动量、冲量、动量定理 板块一 主干梳理·夯实基础 【知识点 1】 动量 Ⅱ 1.定义:运动物体的质量 m 和它的速度 v 的乘积 mv 叫做物体 的动量。动量通常用符号 p 来表示,即 p=mv。 2.单位:在国际单位制中,动量的单位是千克米每秒,符号为 kg·m/s。 说明:动量既有大小,又有方向,是矢量。我们讲物体的动量, 是指物体在某一时刻的动量,动量的方向与物体瞬时速度的方向相同。 有关动量的运算,一般情况下用平行四边形定则进行运算。如果物体 在一条直线上运动,则选定一个正方向后,动量的运算就可以转化为 代数运算。 3.动量的三个性质 (1)动量具有瞬时性。物体的质量是物体的固有属性,是不发生 变化的,而物体的速度是与时刻相对应的,由动量的定义式 p=mv 可知,动量是一个状态量,具有瞬时性。 (2)动量具有相对性。选用不同的参考系时,同一运动物体的动 量可能不同,通常在不说明参考系的情况下,指的是物体相对于地面 的动量。在分析有关问题时要先明确相应的参考系。 (3)矢量性。动量是矢量,方向与速度的方向相同,遵循矢量运 算法则。 【知识点 2】 动量的变化 Ⅱ 1.因为 p=mv 是矢量,只要 m 的大小、v 的大小和 v 的方向三 者中任何一个发生变化,动量 p 就发生了变化。 2.动量的变化量 Δp 是矢量,其方向与速度的改变量 Δv 的方向 相同。 3.动量的变化量 Δp 的大小,一般用末动量 p′减去初动量 p 进 行计算,也称为动量的增量。即 Δp=p′-p,此式为矢量式,若 p′、 p 不在同一直线上,则要用平行四边形定则(或矢量三角形定则)求矢 量差;若在同一直线上,则应先规定正方向,再用正、负表示 p、p′ 的方向,最后用 Δp=p′-p=mv′-mv 进行代数运算。 【知识点 3】 动量、动能、动量变化量的比较 Ⅱ 动量 动能 动量变化量 定义 物体的质量 和速度的乘积 物体由于运 动而具有的能量 物体末动量 与初动量的矢量 差 定义 式 p=mv Ek=1 2 mv2 Δp=p′-p 标矢 性 矢量 标量 矢量 特点 状态量 状态量 过程量 关联 方程 Ek= p2 2m ,Ek=1 2 pv,p= 2mEk,p=2Ek v 联系 1.对于给定的物体,若动能发生变化,则动量一定发 生变化;若动量发生变化,则动能不一定发生变化 2.都是相对量,都与参考系的选取有关,通常选取 地面为参考系 【知识点 4】 冲量、动量定理 Ⅱ 1.冲量 (1)定义:力和力的作用时间的乘积。 (2)表达式:I=Ft。单位:牛秒(N·s)。 (3)矢量性:冲量是矢量,它的方向由力的方向决定。 (4)物理意义:表示力对时间的积累。 (5)作用效果:使物体的动量发生变化。 2.动量定理 (1)内容:物体所受合力的冲量等于物体的动量的变化。 (2)表达式:Ft=Δp=p′-p。 (3)矢量性:动量变化量的方向与冲量方向相同。 (4)适用范围:不仅适用于宏观物体的低速运动,而且对微观粒 子的高速运动同样适用。 板块二 考点细研·悟法培优 考点 1 冲量、动量定理 [深化理解] 1.对动量定理的理解 (1)方程左边是物体受到所有力的总冲量,而不是某一个力的冲 量。其中的 F 可以是恒力,也可以是变力,如果合外力是变力,则 F 是合外力在 t 时间内的平均值。 (2)动量定理说明的是合外力的冲量 I 合和动量的变化量 Δp 的关 系,不仅 I 合与 Δp 大小相等,而且 Δp 的方向与 I 合方向相同。 (3)动量定理的研究对象是单个物体或物体系统。系统的动量变 化等于在作用过程中组成系统的各个物体所受外力冲量的矢量和。而 物体之间的作用力不会改变系统的总动量。 (4)动力学问题中的应用:在不涉及加速度和位移的情况下,研 究运动和力的关系时,用动量定理求解一般较为方便。因为动量定理 不仅适用于恒力作用,也适用于变力作用,而且也不需要考虑运动过 程的细节。 2.应用动量定理时应注意的问题 (1)因动量定理中的冲量为研究对象所受合外力的总冲量,所以 必须准确选择研究对象,并进行全面的受力分析,画出受力图,如果 在过程中外力有增减,还需进行多次受力分析。 (2)因为动量定理是一个表示过程的物理规律,涉及到力的冲量 及研究对象的初、末状态的动量,所以必须分析物理过程,在建立物 理图景的基础上确定初、末状态。 (3)因为动量定理是矢量式,而多数情况下物体的运动是一维的, 所以在应用动量定理前必须建立一维坐标系,确定正方向,并在受力 图上标出,在应用动量定理列式时,已知方向的动量、冲量均需加符 号(与正方向一致时为正,反之为负),未知方向的动量、冲量通常先 假设为正,解出后再判断其方向。 (4)不同时间的冲量可以求和: ①若各力的作用时间相同,且各外力为恒力,可以先求合力,再 乘以时间求冲量,I 合=F 合·t。 ②若各外力作用时间不同,可以先求出每个外力在相应时间的冲 量,然后求各外力冲量的矢量和,即 I 合=F1t1+F2t2+…。 (5)对过程较复杂的运动,可分段用动量定理,也可整个过程用 动量定理。 例 1 如图所示,一高空作业的工人重为 600 N,系一条长为 L= 5 m 的安全带,若工人不慎跌落时安全带的缓冲时间 t=1 s,则安全 带受的冲力是多少?(g 取 10 m/s2) (1)从开始到最终静止,人的动量是否发生了变化? 提示:没有。 (2)人在整个过程中受哪些力的作用? 提示:重力和安全带给的拉力。 尝试解答 1200_N,方向竖直向下。 设工人刚要拉紧安全带时的速度为 v,v2=2gL,得 v= 2gL 经缓冲时间 t=1 s 后速度变为 0,取向下为正方向,工人受两个 力作用,即拉力 F 和重力 mg,对工人由动量定理知, (mg-F)t=0-mv,F=mgt+mv t 将数值代入得 F=1200 N。 由牛顿第三定律,工人给安全带的冲力 F′为 1200 N,方向竖直 向下。 总结升华 应用动量定理解题的方法 在应用动量定理解题时,一定要对物体认真进行受力分析,不可 有力的遗漏;建立方程时要事先选定正方向,确定力与速度的符号。 如例 1 规定向下为正,则 mg 和 v 取正,F 取负,列出关系式。对于 变力的冲量,往往通过动量定理来计算,只有当相互作用时间 Δt 极 短时,且相互作用力远大于重力时,才可舍去重力。 [跟踪训练] 如图所示,在光滑水平面上静止放着两个相互接触 的木块 A、B,质量分别为 m1 和 m2,今有一子弹水平穿过两木块, 设子弹穿过木块 A、B 的时间分别为 t1 和 t2,木块对子弹的阻力恒为 f,则子弹穿过两木块后,木块 A、B 的速度大小分别是( ) A.ft1 m1 ft1 m1+m2 B. ft1 m1+m2 ft1 m1+m2 +ft2 m2 C.ft1 m1 f(t1+t2) m1+m2 D.f(t1+t2) m1 f(t1+t2) m1+m2 答案 B 解析 子弹在 A 中穿过时,以 AB 为研究对象,规定向右为正方 向,由动量定理得:ft1=(m1+m2)v1,所以 v1= ft1 m1+m2 。之后 A 的 速度保持 v1 不变,子弹进入 B 木块,以 B 为研究对象,由动量定理 得:ft2=m2v2-m2v1。联立得:v2=ft2 m2 + ft1 m1+m2 ,故 B 正确,A、 C、D 错误。 考点 2 用动量定理解释生活中实际现象的技巧 [解题技巧] 用动量定理解释的现象一般可分为两类:一类是物体的动量变化 一定,此时力的作用时间越短,力就越大;作用时间越长,力就越小。 另一类是作用力一定,此时力的作用时间越长,动量变化越大,力的 作用时间越短,动量变化越小。分析问题时,要把哪个量一定、哪个 量变化搞清楚。 例 2 (多选)如图所示,把重物 G 压在纸带上,用一水平力 F 缓 慢拉动纸带,重物跟着纸带一起运动;若迅速拉动纸带,纸带将会从 重物下抽出。对这种现象的解释正确的是( ) A.在缓慢拉动纸带时,纸带对重物的摩擦力大 B.在迅速拉动纸带时,纸带对重物的摩擦力小 C.在缓慢拉动纸带时,纸带对重物的冲量大 D.在迅速拉动纸带时,纸带对重物的冲量小 (1)两种情况下,纸带对重物的摩擦力分别是静摩擦力还 是滑动摩擦力? 提示:都是滑动摩擦力。 (2)两种情况下,纸带对重物作用时间长短有何不同? 提示:缓慢拉动时,作用时间较长,迅速拉动时,作用时间短。 尝试解答 选 CD。 对重物应用动量定理得 fΔt=Δp,不管是缓慢拉动纸带还是迅速 拉动纸带,f 都是滑动摩擦力,是恒定不变的力,缓慢拉动时,作用 时间长,纸带对重物的冲量大,重物动量的变化量大,运动状态变化 明显,重物跟着纸带一起运动;迅速拉动时,作用时间短,纸带对重 物的冲量小,重物动量的变化量小,运动状态几乎不变,纸带从重物 下抽出,所以 A、B 选项都不正确,而 C、D 选项是正确的。 总结升华 善于从题目中搜寻相关信息,理解命题者意图。如本题题干中“用 一水平力 F 缓慢拉动纸带,重物跟着纸带一起运动。若迅速拉动纸 带,纸带将会从重物下抽出”,题目中已经透露出快拉纸带,物体动 量变化小,慢拉纸带物体动量变化大,找到该信息,题目基本明了。 [递进题组]1.跳远时,跳在沙坑里比跳在水泥地上安全,这是由 于( ) A.人跳在沙坑上的动量比跳在水泥地上小 B.人跳在沙坑上的动量变化比跳在水泥地上小 C.人跳在沙坑上受到的冲量比跳在水泥地上小 D.人跳在沙坑上受到的冲力比跳在水泥地上小 答案 D 解析 跳远时,落地前的速度约等于起跳时速度的大小,则初动 量大小一定;落地后静止,末动量一定。所以,人接触地面过程的动 量变化量 Δp 一定。因落在沙坑上作用的时间长,落在水泥地上作用 的时间短,根据动量定理 Ft=Δp 可知,作用时间 t 越长则 F 越小, 故 D 正确。 2.如图所示,一铁块压着一纸条放在水平桌面上,当以速度 v 抽出纸条后,铁块掉到地面上的 P 点,若以 2v 速度抽出纸条,则铁 块落地点为( ) A.仍在 P 点 B.在 P 点左侧 C.在 P 点右侧不远处 D.在 P 点右侧原水平位移的两倍处 答案 B 解析 以 2v 速度抽出纸条时,纸条对铁块作用时间减少,而纸 条对铁块的作用力相同,故与以速度 v 抽出相比,纸条对铁块的冲量 I 减小,动量的增量减小,平抛的速度就减小,水平射程也减小,故 落在 P 点的左侧。 考点 3 冲量的计算 [解题技巧] 1.恒力的冲量 用 I=Ft 计算或动量定理计算。 2.变力冲量的求解方法 (1)全程或分段应用动量定理:当水平面光滑时,拉力与合外力 大小相等,可以在 Ft 图象中用面积法直接求动量的变化。但当水平 面粗糙时,在某个时间段摩擦力为静摩擦力,若都按照滑动摩擦力计 算,必然出错,所以需分段应用动量定理,然后再结合实际进行分析。 (2)应用图象求冲量 在 Ft 图象中图象的面积,数值上等于恒力的冲量,如图(a)所示; 若求变力的冲量,仍可用“面积法”来表示,如图(b)所示;对于随 时间均匀变化的力,可以用平均力F1+F2 2 和时间求力的冲量,如图 (c)。 例 3 有一种有趣的离子运动模型,离子从静止向某个方向运动 一段时间后,经过相同时间又可回到原处,其物理模型可简化如下: 质量为 m 的物体静止在光滑水平面上,从 t=0 时刻开始受到水平力 的作用,其大小与时间 t 的关系如图所示,则( ) A.物体一直沿正方向(原方向)运动 B.2t0 时刻的瞬时速度的大小为 t0 时刻的两倍 C.在 t0 时刻到 2t0 时刻这段时间内水平力对物体做负功 D.在 t0 到 2t0 这段时间内力做的功是 0 到 t0 这段时间的两倍 怎样利用 Ft 图象求 F 的冲量? 提示:图象与坐标轴围成的面积。 尝试解答 选 B。 设 t0 时物体的速度为 v0,2t0 时物体的速度为 v,0~t0 内,由动量定 理可得:Ft0=mv0,t0~2t0 内,由动量定理可得:-3Ft0=mv-mv0, 联立可得:v=-2v0,A 错误,B 正确;根据动能定理可知,0~t0 内, W1=1 2 mv20-0, t0~2t0 内,W2=1 2 mv2-1 2 mv20=3×1 2 mv20=3W1,C、D 错误。 总结升华 (1)冲量的计算。首先注意力是恒力还是变力。其次注意求的是 哪个力的冲量,还是合力的冲量。用动量定理求出的是合力的冲量。 (2)注意冲量与做功的区别。 [跟踪训练] (多选)两个质量相等的物体在同一高度沿倾角不同 的两个光滑斜面由静止开始自由下滑,在它们到达斜面底端的过程中 ( ) A.重力的冲量相同 B.重力的功相同 C.斜面弹力的冲量为零 D.斜面弹力做功为零 答案 BD 解析 设斜面高为 h,倾角为 θ,物体质量为 m,则两物体滑至 斜面底端的过程,重力做功均为mgh,物体滑至底端用时t= 1 sinθ 2h g , 重力的冲量 IG=mgt= m sinθ 2gh,随 θ 变化而变化,故重力的冲量不 同,A 项错误,B 项正确;斜面弹力方向与物体运动方向垂直,不做 功,但弹力的冲量 IFN=FN·t=mgcosθ·t= mcosθ sinθ 2gh≠0,C 项错误,D 项正确。 建模提能 5 应用动量定理分析 变质量问题的技巧 通常情况下应用动量定理解题,研究对象为质量一定的物体,它 与其他物体只有一次相互作用,我们称之为“单体作用”。这类题目 对象明确、过程清楚,求解不难。而对于流体连续相互作用的这类问 题,研究对象不明,相互作用的过程也较复杂,求解有一定难度。 方法指导:巧选对象,将连续作用转化为“单体作用”;巧取瞬 间,将较长时间内的变质量问题转化为短时间内不变质量问题。 1.建立“柱体模型” 沿流速 v 的方向选取一段柱形流体,设在 Δt 时间内通过某一横 截面 S 的流体长度为 Δl,如图所示,若流体的密度为 ρ,那么,在这 段时间内流过该截面的流体的质量为 Δm=ρΔlS=ρSv·Δt。 2.掌握微元法 当所取时间为 Δt 足够短时,图中流体柱长度 Δl 甚短,相应的质 量 Δm 也很小。显然,选取流体柱的这一微元小段作为研究对象就称 微元法。 3.运用动量定理 求解这类问题一般运用动量定理,即流体微元所受的合外力的冲 量等于微元动量的增量,即 F=mΔv Δt 。 [2017·河北秦皇岛模拟]飞船正面面积 S=1 m2,以 v=2×103 m/s 飞入一宇宙微尘区,此区域每立方米空间有一个微尘,微尘的平均质 量 m0=2×10-4 kg,设微尘与飞船相碰后附在飞船表面。要使飞船 速度不变,求飞船的推力是多少。 [答案] 800 N [解析] 微尘碰后附在飞船表面,飞船质量增大了,要使飞船速 度不变,只能施加推力。取附在飞船表面的微尘为研究对象,设时间 t 内飞船把微尘推到相等的速度,由动量定理得 Ft=mv-0,而这段 时间内附在飞船表面的微尘质量为 m=m0Svt,由以上两式得 F= m0Sv2,代入数据得 F=800 N,由牛顿第三定律知,飞船需要的推力 为 800 N。 1.水流以流速 v=10 m/s,从截面积 S=4 cm2 的管内水平射在 竖直的墙壁上,求水流对墙壁的压力。设水和墙壁碰撞后沿墙壁流动。 答案 40 N 解析 选取 Δt 时间内的一段水柱为研究对象,它与墙壁的相互 作用时间也就是 Δt。 设墙壁对水流的作用力为 F,则在 Δt 内,墙壁对水流的作用力 的冲量等于 Δt 时间内水流动量的变化。 设 ρ 为水的密度,水柱的质量为 m=ρSvΔt。 由题意可知,水的水平末速度等于零。 选水流的方向为正方向,得-FΔt=ρSvΔt(0-v), 化简并代入得 F=ρSv2=1×103×102×4×10-4 N=40 N。 根据牛顿第三定律可知,水对墙壁的压力大小为 40 N。 2.国产水刀——超高压数控万能水切割机以其神奇的切割性能 在北京国际展览中心举行的第五届国际机床展览会上引起轰动,它能 切割 40 mm 厚的钢板,50 mm 厚的大理石等其他材料。 水刀就是将普通的水加压,使其从口径为 0.2 mm 的喷嘴中以 800~1000 m/s 速度射击出水射流。我们知道,任何材料,承受的压 强都有一定限度,下表列出了一些材料所能承受的压强限度。 A 橡胶 5×107 Pa B 花岗 石 1.2×108~2.6×108 Pa C 铸铁 8.8×108 Pa D 工具 钢 6.7×108 Pa 设想有一水刀的水射流横截面积为 S,垂直入射的速度 v=800 m/s,水射流与材料接触后速度为零,且不附着在材料上,水的密度 ρ =1×103 kg/m3,则此水刀不能切割上述材料中的________。 答案 CD 解析 以射到材料上的水量 Δm 为研究对象,以其运动方向为正 方向,由动量定理得 pSΔt=-ρSvΔt·v,p=-ρv 2=-6.4×108 Pa, 由表中数据可知,不能切割 CD。 板块三 限时规范特训 时间:45 分钟 满分:100 分 一、选择题(本题共 10 小题,每小题 7 分,共 70 分。其中 1~7 为单选,8~10 为多选) 1.[2017·湖北黄石市黄石一中模拟]有关物体的动量,下列说法 正确的是( ) A.同一物体的动量改变,一定是速度大小改变 B.同一物体的动量改变,一定是速度方向改变 C.同一物体的运动速度改变,其动量一定改变 D.同一物体的运动速度改变,其动量可能不变 答案 C 解析 动量为一矢量,由 p=mv 知,同一物体动量改变,可能 是速度大小变化、也可能是速度方向变化,所以 A、B 错误;同一物 体速度改变,动量一定变化,故 C 正确,D 错误。 2.[2017·山西太原五中月考]下面关于物体动量和冲量的说法错 误的是( ) A.物体所受合外力冲量越大,它的动量也越大 B.物体所受合外力冲量不为零,它的动量一定要改变 C.物体动量增量的方向,就是它所受冲量的方向 D.物体所受合外力越大,它的动量变化就越快 答案 A 解析 Ft 越大,Δp 越大,但动量不一定大,它还与初态的动量 有关,故 A 错误,B 正确;冲量不仅与 Δp 大小相等,而且方向相同, 所以 C 正确;物体所受合外力越大,速度变化越快,即动量变化越 快,D 正确。 3.把一个乒乓球竖直向上抛出,若空气阻力大小不变,则乒乓 球上升到最高点和从最高点返回到抛出点的过程相比较( ) A.重力在上升过程的冲量大 B.合外力在上升过程的冲量大 C.重力冲量在两过程中的方向相反 D.空气阻力冲量在两过程中的方向相同 答案 B 解析 乒乓球上升过程 mg+f=ma 1,下降过程 mg-f=ma 2, 故 a1>a2。由于上升和下降通过的位移相同,由公式 x=1 2 at2 知上升用 的时间小于下降用的时间,上升时重力的冲量小,A 错误;而重力的 冲量,不管是上升还是下降,方向都向下,故 C 错误;而空气阻力 冲量的方向:上升时向下,下降时向上,故方向相反,D 错误;再由 公式 v= 2ax可知,上升的初速度大于下降的末速度,由动量定理知, 合外力的冲量等于动量的变化量,因上升时动量的变化量大于下降时 动量的变化量,故合外力在上升过程冲量大,故 B 正确。 4.[2017·山东临沂调研]人从高处跳到较硬的水平地面时,为了 安全,一般都是让脚尖先触地且着地时要弯曲双腿,这是为了( ) A.减小地面对人的冲量 B.减小人的动量的变化 C.增加人对地面的冲击时间 D.增大人对地面的压强 答案 C 解析 脚尖先触地且着地时弯曲双腿,可以增加人对地面的冲击 时间,根据动量定理 F=Δp Δt 可知,地面对人的作用力减小,从而达到 安全的目的,故 C 正确,A、B、D 错误。 5. [2018·江西上饶一中月考]物体 A 和 B 用轻绳相连在轻质弹簧 下静止不动,如图甲所示。A 的质量为 m,B 的质量为 M。当连接 A、B 的绳突然断开后,物体 A 上升经某一位置时的速度为 v,这时 物体 B 下落速度大小为 u,如图乙所示。这段时间里,弹簧的弹力对 物体的冲量为( ) A.mv B.mv-Mu C.mv+Mu D.mv+mu 答案 D 解析 弹簧的弹力是变力,时间是未知量,显然,不能直接从冲 量的概念 I=Ft 入手计算,只能用动量定理求解,对物体 A:I弹-mgt =mv。对物体 B:Mgt=Mu。消去 t 解得 I 弹=mv+mu,D 正确, A、B、C 错误。 6.一质量为 2 kg 的物体受水平拉力 F 作用,在粗糙水平面上做 加速直线运动时的 at 图象如图所示,t=0 时其速度大小为 2 m/s, 滑动摩擦力大小恒为 2 N,则( ) A.t=6 s 时,物体的速度为 18 m/s B.在 0~6 s 内,合力对物体做的功为 400 J C.在 0~6 s 内,拉力对物体的冲量为 36 N·s D.t=6 s 时,拉力 F 的功率为 200 W 答案 D 解析 类比速度图象中位移的表示方法可知,在加速度—时间图 象中图线与坐标轴所围面积表示速度变化量,在 0~6 s 内 Δv=18 m/s, 又 v0=2 m/s,则 t=6 s 时的速度 v=20 m/s,A 错误;由动能定理可 知,0~6 s 内,合力做的功为 W=1 2 mv2-1 2 mv20=396 J,B 错误;由 动量定理可知,IF-Ff·t=mv-mv0,代入已知条件解得 IF=48 N·s,C 错误;由牛顿第二定律可知,6 s 末 F-Ff=ma,解得 F=10 N,所 以拉力的功率 P=Fv=200 W,D 正确。 7.质量为 m 的运动员从床垫正上方 h1 高处自由下落,落垫后 反弹的高度为 h2,设运动员每次与床垫接触的时间为 t,则在运动员 与床垫接触的时间内运动员对床垫的平均作用力为(空气阻力不计, 重力加速度为 g)( ) A.mg+m 2gh1 t B.mg+m 2gh2 t C.m 2gh2+m 2gh1 t D.mg+m 2gh2+m 2gh1 t 答案 D 解析 设在时间 t 内,床垫对运动员的平均作用力大小为 F,运 动员刚接触床垫时的速率为 v1,则离开床垫时的速率为 v2。如图所 示,规定竖直向上为正方向,根据动量定理有: F 合 t=Δp,F 合=F-mg Δp=mv2-m(-v1)=mv2+mv1 由机械能守恒定律有 1 2 mv21=mgh1,v1= 2gh1 1 2 mv22=mgh2,v2= 2gh2 由此可得 F=mg+mv2+mv1 t =mg+m 2gh2+m 2gh1 t ,由牛顿 第 三 定 律 可 得 , 运 动 员 对 床 垫 的 作 用 力 大 小 F′ = F = mg + m 2gh2+m 2gh1 t ,方向为竖直向下,D 正确,A、B、C 错误。 8. 恒力 F 作用在质量为 m 的物体上,如图所示,由于地面对物 体的摩擦力较大,没有被拉动,则经时间 t,下列说法正确的是( ) A.拉力 F 对物体的冲量大小为零 B.拉力 F 对物体的冲量大小为 Ft C.拉力 F 对物体的冲量大小是 Ftcosθ D.合力对物体的冲量大小为零 答案 BD 解析 物体静止时,合外力为零,合外力的冲量为零,D 正确; 拉力是恒力,其冲量为力与时间的乘积,B 正确,A、C 错误。 9.如图甲所示,一物块在 t=0 时刻,以初速度 v0 从足够长的 粗糙斜面底端向上滑行,物块速度随时间变化的图象如图乙所示,t0 时刻物块到达最高点,3t0 时刻物块又返回底端。由此可以确定( ) A.物块冲上斜面的最大位移 B.物块返回底端时的速度 C.物块所受摩擦力的大小 D.斜面倾角 θ 答案 ABD 解析 根据图线的“面积”可以求出物体冲上斜面的最大位移为: x=v0t0 2 ,A正确;设物块返回底端时的速度大小为v,则有:v0t0 2 =v·2t0 2 , 解得:v= v0 2 ,B 正确;根据动量定理得上滑过程:-(mgsinθ+ μmgcosθ)t0=0-mv0,下滑过程: (mgsinθ-μmgcosθ)·2t 0=mv,联 立解得:f=3mgsinθ-3mv0 4t0 ,sinθ=5v0 4gt0 ,由于质量 m 未知,则无法 求出 f,可以求出斜面倾角 θ,D 正确,C 错误。 10.在光滑水平面上,放着两块长度相同、质量分别为 M1 和 M2 的木板,在两木板的左端各放一个大小、形状、质量完全相同的物块, 如图所示。开始时,各物均静止,今在两物块上各作用一个水平恒力 F1 和 F2,当物块与木板分离时,两木板的速度分别为 v1 和 v2,物块 与两木板之间的动摩擦因数相同,下列说法正确的是( ) A.若 F1=F2,M1>M2,则 v1>v2 B.若 F1=F2,M1查看更多