- 2021-04-19 发布 |
- 37.5 KB |
- 1页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考正方形的性质和判定课后作业
特殊的平行四边形(第五课时)课后作业 1.如果正方形的一条边长是 3,那么它的对角线长是_______. 【答案】 23 【解析】考查正方形的性质,利用正方形中的等腰直角三角形求出答案. 2.下列命题中的假命题是( ) (A)一组邻边相等的平行四边形是菱形 (B)一组邻边相等的矩形是正方形 (C)一组对边平行且相等的四边形是平行四边形 (D)一组对边相等且有一个角是直角的四边形是矩形 【答案】D 【解析】考查平行四边形、矩形、菱形、正方形的判定方法. 3.如图,正方形 ABCD 中,点 E 是 CD 边上一点,连接 AE 交 对角线 BD 于点 F,连接 CF,则图中全等三角形共有( ) (A)1 对 (B)2 对 (C)3 对 (D)4 对 【答案】C 【解析】考查正方形的对称性. 4.如图,正方形 ABCD 中,E 是 CD 边上的一点, F 为 BC 延长线上一点,CE=CF. (1)求证:△BCE ≌△DCF; (2)若∠BEC=60°,求∠EFD 的度数. 【答案】证明:(1)∵四边形 ABCD 是正方形, ∴BC=DC,∠BCD=90°,∴∠DCF=90° 在△BCE 和△DCF 中, BC=DC,CE=CF,∠BCE =∠DCF, ∴△BCE ≌△DCF(SAS). (2)∵CE=CF,∴∠CEF=∠CFE,∴∠CFE= 2 1 (180°-90°)=45°, ∵△BCE ≌△DCF,∴∠CFD=∠BEC=60°, ∴∠EFD=∠DFC-∠EFC=15°. 【解析】利用正方形的性质,证明三角形全等,从而求出角度.查看更多