- 2021-04-19 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
初中数学八年级上册第十四章整式的乘法与因式分解14-1整式的乘法3积的乘方教案 人教版
积的乘方 教学目标:经历探索积的乘方的运发展推理能力和有条理的表达能力.学习积的乘方的运算法则,提高解决问题的能力.进一步体会幂的意义.理解积的乘方运算法则,能解决一些实际问题. 教学重点与难点:积的乘方运算法则及其应用;幂的运算法则的灵活运用. 教学过程: 一、回顾旧知识 同底数幂的乘法 同底数幂相乘,底数不变,指数相加 幂的乘方 幂的乘方,底数不变,指数相乘 二、创设情境,引入新课 问题:已知一个正方体的棱长为2×103cm,你能计算出它的体积是多少吗? 学生分析,并得出结论,该正方体的体积为V=(2×103)3cm3 提问: 体积V=(2×103)3cm3 ,结果是幂的乘方形式吗?底数是2和103的乘积,虽然103是幂,但总体来看,它是积的乘方。积的乘方如何运算呢?能不能找到一个运算法则?有前两节课的探究经验,请同学们自己探索,发现其中的奥秒. 三、自主探究,引出结论 1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律? ①(ab)2=(ab)•(ab)=(a•a)•(b•b)=a( )b( ) ②(ab)3=______=_______=a( )b( ) ③(ab)n=______=______=a( )b( )(n是正整数) 2.分析过程: ①(ab)2=(ab)•(ab)=(a•a)•(b•b)=a2b2; ②(ab)3=(ab)•(ab)•(ab)=(a•a•a)•(b•b•b)=a3b3; ③(ab)n==()•()=anbn 3.得到结论: 2 积的乘方:(ab)n=an•bn (n是正整数) 把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积. 4.积的乘方法则可以进行逆运算.即: an•bn=(ab)n(n为正整数) an•bn=()•()──幂的意义 =──乘法交换律、结合律 =(a•b)n ──乘方的意义 同指数幂相乘,底数相乘,指数不变. 四、小结: 1.总结积的乘方法则,理解它的真正含义 2.幂的三条运算法则的综合运用 2查看更多