- 2021-04-17 发布 |
- 37.5 KB |
- 2页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
提公因式法(二)教案
4.2.2 提公因式法(二) 教学目标 (一)知识认知要求 进一步让学生掌握用提公因式法分解因式的方法. (二)能力训练要求 进一步培养学生的观察能力和类比推理能力. (三)情感与价值观要求 通过观察能合理地进行分解因式的推导,并能清晰地阐述自己的观点. 教学重点 能观察出公因式是多项式的情况,并能合理地进行分解因式. 教学难点 准确找出公因式,并能正确进行分解因式. 教学过程 一、创设问题情境,引入新课 上节课我们学习了用提公因式法分解因式,知道了一个多项式可以分解为一个单项式与一个多项式的积的形式,那么是不是所有的多项式分解以后都是同样的结果呢?本节课我们就来揭开这个谜. 二、新课讲解 [例2]把a(x-3)+2b(x-3)分解因式. 分析:这个多项式整体而言可分为两大项,即a(x-3)与2b(x-3),每项中都含有(x-3),因此可以把(x-3)作为公因式提出来. 解:a(x-3)+2b(x-3)=(x-3)(a+2b) 从分解因式的结果来看,是不是一个单项式与一个多项式的乘积呢? [例3]把下列各式分解因式: (1)a(x-y)+b(y-x); (2)6(m-n)3-12(n-m)2. 分析:虽然a(x-y)与b(y-x)看上去没有公因式,但仔细观察可以看出(x-y)与(y-x)是互为相反数,如果把其中一个提取一个“-”号,则可以出现公因式,如y-x=-(x-y).(m-n)3与(n-m)2也是如此. 解:(1)a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) (2)6(m-n)3-12(n-m)2 =6(m-n)3-12[-(m-n)]2 =6(m-n)3-12(m-n)2 =6(m-n)2(m-n-2). 二、做一做 请在下列各式等号右边的括号前填入“+”或“-”号,使等式成立: (1)2-a=__________(a-2); (2)y-x=__________(x-y); (3)b+a=__________(a+b); (4)(b-a)2=__________(a-b)2; (5)-m-n=__________-(m+n); (6)-s2+t2=__________(s2-t2). 解:(1)2-a=-(a-2); - 2 - (2)y-x=-(x-y); (3)b+a=+(a+b); (4)(b-a)2=+(a-b)2; (5)-m-n=-(m+n); (6)-s2+t2=-(s2-t2). 三、课堂练习 1.把下列各式分解因式: (1)x(a+b)+y(a+b) (2)3a(x-y)-(x-y) (3)6(p+q)2-12(q+p) (4)a(m-2)+b(2-m) (5)2(y-x)2+3(x-y) (6)mn(m-n)-m(n-m)2 2.补充练习:把下列各式分解因式 (1)5(x-y)3+10(y-x)2 (2)m(a-b)-n(b-a) (3)m(m-n)(p-q)-n(n-m)(p-q) (4)(b-a)2+a(a-b)+b(b-a) 四.课时小结 本节课进一步学习了用提公因式法分解因式,公因式可以是单项式,也可以是多项式,要认真观察多项式的结构特点,从而能准确熟练地进行多项式的分解因式. 五、课后作业 习题2.3 六.活动与探究 把(a+b-c)(a-b+c)+(b-a+c)·(b-a-c)分解因式. 解:原式=(a+b-c)(a-b+c)-(b-a+c)(a-b+c) =(a-b+c)[(a+b-c)-(b-a+c)] =(a-b+c)(a+b-c-b+a-c) =(a-b+c)(2a-2c) =2(a-b+c)(a-c) 七、教学反思: ⒈《数学课程标准》提出学生是学习数学的主人,教师是数学学习的组织者、引导者与合作者,本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索,共同探究、解决问题.在教学中能注意充分调动学生的学习积极性、主动性,坚持做到以人为本,以学生为先,立足于让学生先看、先想、先说、先练,根据自己的体验,用自己的思维方式,通过实验、思考、合作、交流学好知识. 2. 探究、发现中,让学生分组讨论,合作、交流,培养了学生新的学习方法,加强了学生团结、协作的能力;讨论中充分展示学生语言的零乱性,培养了学生良好的思维能力、语言运用能力。适时对学生积极评价,体现了平等的师生关系,张扬了学生的个性,体现了《标准》的人文化。 - 2 -查看更多