- 2021-04-17 发布 |
- 37.5 KB |
- 10页
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/85c2c5477600ef42333a15c6fa474219/img/1.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/85c2c5477600ef42333a15c6fa474219/img/2.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/85c2c5477600ef42333a15c6fa474219/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学文卷·2018届甘肃省兰州市高三一诊(2018
兰州市2018年高三诊断考试 数学(文科) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 设全集,集合,集合,则( ) A. B. C. D. 2. 已知复数(是虚数单位),则下列说法正确的是( ) A.复数的实部为 B.复数的虚部为 C.复数的共轭复数为 D.复数的模为 3. 已知数列为等比数列,且,则( ) A. B. C. D. 4.若双曲线的两条渐近线分别与抛物线的准线交于,两点,为坐标原点.若的面积为,则的值为( ) A. B. C. D. 5.已知圆:,直线:,则圆上任取一点到直线的距离大于的概率是( ) A. B. C. D. 6.已知直线与直线平行,则它们之间的距离是( ) A. B. C. D. 7. 某程序框图如图所示,则程序运行后输出的的值是( ) A. B. C. D. 8. 刘徽《九章算术注》记载:“邪解立方有两堑堵,邪解堑堵,其一为阳马,一为鳖臑,阳马居二,鳖臑居一,不易之率也”.意即把一长方体沿对角面一分为二,这相同的两块叫做堑堵,沿堑堵的一顶点与其相对的面的对角线剖开成两块,大的叫阳马,小的叫鳖臑,两者体积之比为定值,这一结论今称刘徽原理.如图是一个阳马的三视图,则其外接球的体积为( ) A. B. C. D. 9.设:实数,满足,:实数,满足,则是的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要的条件 10.若等比数列的前项和为,其中,是常数,则的值为( ) A. B. C. D. 11.抛物线的焦点为,,是抛物线上两动点,若 ,则的最大值为( ) A. B. C. D. 12.已知函数是定义在上的偶函数,且当时,不等式成立,若,,,则,,之间的大小关系为( ) A. B. C. D. 二、填空题:本大题共4小题,每小题5分,共20分. 13.若,则 . 14.已知样本数据,,……的方差是,如果有,那么数据,,……的均方差为 . 15. 设函数向左平移个单位长度后得到的函数是一个奇函数,则 . 16.若向量,,且,则的最小值为 . 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.已知向量,,函数. (1)求的最小正周期; (2)当时,的最小值为,求的值. 18.如图所示,矩形中,,平面,,为上的点,且平面. (1)求证:平面; (2)求三棱锥的体积. 19.交管部门为宣传新交规举办交通知识问答活动,随机对该市岁的人群抽样了人,回答问题统计结果如图表所示: 分组 回答正确的人数 回答正确的人数占本组的频率 第组 第组 第组 第组 第组 (1)分别求出,,,的值; (2)从第,,组回答正确的人中用分层抽样方法抽取人,则第,,组每组应各抽取多少人? (3)在(2)的前提下,决定在所抽取的人中随机抽取人颁发幸运奖,求:所抽取的人中至少有一个第组的人的概率. 20.已知圆:,过且与圆相切的动圆圆心为. (1)求点的轨迹的方程; (2)设过点的直线交曲线于,两点,过点的直线交曲线于,两点,且,垂足为(,,,为不同的四个点). ①设,证明:; ②求四边形的面积的最小值. 21.已知函数. (1)若图象上处的切线的斜率为,求的极大值; (2)在区间上是单调递减函数,求的最小值. (二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题评分. 22.[选修4-4:坐标系与参数方程] 在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系.已知直线的参数方程是(是参数),圆的极坐标方程为. (1)求圆心的直角坐标; (2)由直线上的点向圆引切线,并切线长的最小值. 23.[选修4-5:不等式选讲] 设函数,其中. (1)当时,求不等式的解集; (2)若时,恒有,求的取值范围. 兰州市2018年高三诊断考试 数学(文科)试题参考答案及评分参考 一、选择题 1-5: DDCBB 6-10: AABCD 11、12:AC 二、填空题 13. 14. 15. 16. 三、解答题 17.解:(1)由题意知: , 所以的最小正周期为. (2)由(1)知:, 当时,. 所以当时,的最小值为. 又∵的最小值为,∴,即. 18.解:(1)因为面,所以, 又,所以. 因为面,所以. 又,所以面,即平面. (2)因为,所以,,, 又因为为中点,所以. 因为面,所以面. 所以. 19.解:(1)第组人数,所以, 第组人数,所以, 第组人数,所以, 第组人数,所以, 第组人数,所以. (2)第,,组回答正确的人的比为, 所以第,,组每组应各依次抽取人,人,人. (3)记抽取的人中,第组的记为,,第组的记为,,,第组的记为,则从名幸运者中任取名的所有可能的情况有种,他们是: ,,,,,,,,,,,,,,. 其中第组至少有人的情况有种,他们是: ,,,,,,,,. 故所求概率为. 20.解:(1)设动圆半径为, 则,, , 由椭圆定义可知,点的轨迹是椭圆, 其方程为. (2)①证明:由已知条件可知,垂足在以为直径的圆周上, 则有, 又因,,,为不同的四个点,. ②解:若或的斜率不存在,四边形的面积为. 若两条直线的斜率存在,设的斜率为, 则的方程为, 解方程组,得, 则, 同理得, ∴, 当且仅当,即时等号成立. 综上所述,当时,四边形的面积取得最小值为. 21.解:(1)∵,∴, 由题意得且, 即,解之得,. ∴,, 令得,, 列表可得 + - + 极大值 极小值 ∴当时,取极大值. (2)∵在上是减函数, ∴在上恒成立, ∴,即, 作出不等式组表示的平面区域如图 当直线经过点时,取最小值. 22.解:(1)∵, ∴, ∴圆的直角坐标方程为, 即,∴圆心直角坐标为. (2)方法1:直线上的点向圆引切线长是 , ∴直线上的点向圆引的切线长的最小值是. 方法2:直线的普通方程为, ∴圆心到直线距离是, ∴直线上的点向圆引的切线长的最小值是. 23.解:(1)当时,, 所以,所以或, 解集为. (2),因为,∴时,恒成立, 又时,当时,,∴只需即可, 所以. 查看更多