- 2021-04-17 发布 |
- 37.5 KB |
- 22页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
陕西省榆林中学2020届高三第三次模拟考试理科数学试题
2020届榆林中学高三第三次模拟考试卷 理 科 数 学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置. 2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效. 3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内.写在试题卷、草稿纸和答题卡上的非答题区域均无效. 4.考试结束后,请将本试题卷和答题卡一并上交. 第Ⅰ卷 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为( ) A. 4 B. 3 C. 2 D. 1 【答案】A 【解析】 【分析】 由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案. 【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项. 【点睛】考查集合并集运算,属于简单题. 2.已知为虚数单位,复数,则( ) A. B. C. D. 【答案】C 【解析】 【分析】 对进行化简,得到标准形式,在根据复数模长的公式,得到 【详解】对复数进行化简 所以 【点睛】考查复数的基本运算和求复数的模长,属于简单题. 3.抛物线的通径长为( ) A. B. C. D. 【答案】D 【解析】 【分析】 先将抛物线方程,化为标准方程,再利用通径公式求解. 【详解】抛物线方程,化为标准方程为, 所以通径. 故选:D 【点睛】本题主要考查抛物线的几何性质,属于基础题. 4.某中学2018年的高考考生人数是2015年高考考生人数的1.5倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图: 则下列结论正确的是( ) A. 与2015年相比,2018年一本达线人数减少 B. 与2015年相比,2018二本达线人数增加了0.5倍 C. 2015年与2018年艺体达线人数相同 D. 与2015年相比,2018年不上线的人数有所增加 【答案】D 【解析】 【分析】 设2015年该校参加高考的人数为,则2018年该校参加高考的人数为. 观察柱状统计图,找出各数据,再利用各数量间关系列式计算得到答案. 【详解】设2015年该校参加高考的人数为,则2018年该校参加高考的人数为. 对于选项A.2015年一本达线人数为.2018年一本达线人数为,可见一本达线人数增加了,故选项A错误; 对于选项B,2015年二本达线人数为,2018年二本达线人数为,显然2018年二本达线人数不是增加了0.5倍,故选项B错误; 对于选项C,2015年和2018年.艺体达线率没变,但是人数是不相同的,故选项C错误; 对于选项D,2015年不上线人数为.2018年不上线人数为.不达线人数有所增加.故选D. 【点睛】本题考查了柱状统计图以及用样本估计总体,观察柱状统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键. 5.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将填入的方格内,使三行,三列和两条对角线上的三个数字之和都等于.一般地,将连续的正整数填入个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做阶幻方记阶幻方的对角线上的数字之和为,如图三阶幻方的,那么的值为( ) A. B. C. D. 【答案】A 【解析】 【分析】 根据幻方对角线上的数成等差数列,利用等差数列的性质和求和公式求解. 【详解】根据题意可知,幻方对角线上的数成等差数列, 由等差数列的性质可知对角线上的首尾两个数相加正好等于, 由等差数列求和公式得 所以 故选:A 【点睛】本题主要考查等差数列的性质和等差数列求和,还考查了逻辑推理和运算求解的能力,属于基础题. 6.根据如下样本数据 得到的回归方程为,则( ) A. , B. , C. , D. , 【答案】A 【解析】 【分析】 画出散点图,根据y的值大致随x的增加的变化,判断b,再令,判断 . 【详解】画出散点图如图所示: y的值大致随x的增加而减少,因而两个变量呈负相关,故, 又时,,故, 故选:A. 【点睛】本题主要考查变量的相关关系,还考查了理解辨析的能力,属于基础题. 7.设是任意等比数列,它的前项和,前项和与前项和分别为,,,则下列等式中恒成立的是( ) A. B. C. D. 【答案】D 【解析】 【分析】 根据等比数列的性质有,,成等比数列,再利用等比中项求解. 【详解】由等比数列的性质得,,成等比数列, 所以, 化简得. 故选:D 【点睛】本题主要考查等比数列的性质,还考查了理解辨析的能力,属于基础题. 8.设,则的大小关系是( ) A. B. C. D. 【答案】C 【解析】 【分析】 根据对数运算、指数函数的性质,利用和进行分段,由此比较出三者的大小关系. 【详解】; 故选:C. 点睛】本小题主要考查指数式、对数式比较大小,属于基础题. 9.已知函数的最小正周期是,将函数的图象向左平移个单位长度后所得的函数图象过点,则下列结论中正确的是( ) A. 的最大值为 B. 在区间上单调递增 C. 的图像关于直线对称 D. 的图像关于点对称 【答案】B 【解析】 【分析】 根据函数的最小正周期是,得到,将函数的图象向左平移个单位长度后得到,再由其函数图象过点,解得,得到,然后逐项验证. 【详解】因为函数的最小正周期是, 所以, 将函数的图象向左平移个单位长度后得到, 又函数图象过点, 所以,则, 因为,所以, 所以, A. 易得的最大值为1,故错误. B. ,故在区间上单调递增,故正确. C. ,故错误. D. ,故错误. 故选:B 【点睛】本题主要考查三角函数的图象和性质,还考查了数形结合的思想和运算求解的能力,属于中档题. 10.过正方体的顶点作平面,使得正方体的各棱与平面所成的角都相等,则满足条件的平面的个数为( ) A. B. C. D. 【答案】C 【解析】 【分析】 法一:直线AB、AD、AA1与平面A1BD所成角都相等,过顶点A作平面α∥平面A1BD,过顶点A分别作平面α与平面C1BD、平面B1AC,平面D1AC平行,直线AB、AD、AA1与平面α所成的角都相等. 法二:只要与体对角线垂直的平面都和正方体的所有棱所成的角相等,由此能求出结果. 【详解】解法一:在正方体ABCD﹣A1B1C1D1中, 三棱锥A﹣A1BD是正三棱锥, 直线AB、AD、AA1与平面A1BD所成角都相等, 过顶点A作平面α∥平面A1BD, 则直线AB、AD、AA1与平面α所成角都相等, 同理,过顶点A分别作平面α与平面C1BD、平面B1AC,平面D1AC平行, 直线AB、AD、AA1与平面α所成的角都相等, ∴这样的平面α可以作4个. 故选:C 解法二:只要与体对角线垂直的平面都和正方体的所有棱所成的角相等 因为有四条体对角线,所以,可以做四个平面. 故选:C 【点睛】本题主要考查正方体在平面上的投影以及直线与平面所成的角,还考查了空间想象的能力,属于基础题. 11.椭圆与双曲线共焦点,,它们在第一象限的交点为,设,椭圆与双曲线的离心率分别为,,则( ) A. B. C. D. 【答案】B 【解析】 【分析】 设椭圆的长轴长为,双曲线的实轴长为,交点到两焦点的距离分别为,焦距为,利用余弦定理得到,再根据椭圆和双曲线的定义,得到,代入求解. 【详解】设椭圆的长轴长为,双曲线的实轴长为, 交点到两焦点的距离分别为,焦距为, 则, 又,,故,, 所以, 化简得, 即 故选:B 【点睛】本题主要考查椭圆与双曲线的几何性质,还考查了运算求解的能力,属于中档题. 12.已知正方形的边长为,为内一点,满足,则( ) A. B. C. D. 【答案】D 【解析】 【分析】 在中,利用正弦定理解得,再在中,利用余弦定理解得,然后通过三角形的形状得到结论. 【详解】已知正方形的边长为, 如图所示: 在中,由正弦定理得, 所以, 在中,由余弦定理得, ∴为等腰三角形,. 故选:D 【点睛】本题主要考查正弦定理,余弦定理在平面几何中的应用,还考查了运算求解的能力,属于中档题. 第Ⅱ卷 二、填空题:本大题共4小题,每小题5分,共20分. 13.展开式中的系数为_______. 【答案】 【解析】 【分析】 由,利用通项公式求解. 【详解】因为, 所以展开式中含的项为, 所以的系数为. 故答案为: 【点睛】本题主要考查二项式定理的通项公式,还考查了运算求解的能力,属于基础题. 14.设实数,满足不等式,当时取得最小值时,直线与以为圆心的圆相切,则圆的面积为________. 【答案】 【解析】 【分析】 由实数,满足不等式,作出可行域,将变形为,平移直线,找到最优点,得到的最小值,从而得到直线方程,再利用直线与圆相切求解. 【详解】由实数,满足不等式,作出可行域如图所示阴影部分, 将变形为,平移直线, 当直线过点时,在y轴上的截距最小,此时,取得最小值, 直线方程为, 圆心到直线的距离为:, 所以圆的面积为. 故答案为: 【点睛】本题主要考查线性规划求最值以及直线与圆的位置关系,还考查了数形结合的思想和运算求解的能力,属于中档题. 15.已知等差数列的公差,,则使得集合,恰好有两个元素的的值为________. 【答案】 【解析】 【分析】 要使得集合恰好有两个元素,根据元素的互异性,则,再通过,利用诱导公式求解. 【详解】要使得集合恰好有两个元素, 则, 所以, 所以,的终边关于轴对称, , 因为, 所以. 故答案为: 【点睛】本题主要考查知识迁移涉及了集合,诱导公式和等差数列等知识,还考查了特殊与一般的思想和理解应用的能力,属于中档题. 16.在三棱锥中,,,,若PA与底面ABC所成的角为,则点P到底面ABC的距离是______;三棱锥P-ABC的外接球的表面积_____. 【答案】 (1). (2). 【解析】 【分析】 首先补全三棱锥为长方体,即可求出点P到底面ABC的距离,同时长方体的体对角线就是三棱锥的外接球的直径,然后即可求出外接球的表面积. 【详解】将三棱锥置于长方体中,其中平面, 由与底面ABC所成的角为,可得, 即为点P到底面ABC的距离, 由,得,如图, PB就是长方体(三条棱长分别为1,1,)外接球的直径, 也是三棱锥外接球的直径,即, 所以球的表面积为. 故答案为:;. 【点睛】本题考查了点到面的距离和三棱锥外接球的表面积,属于一般题. 三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.已知分别在射线(不含端点)上运动,,在中,角所对的边分别是. (Ⅰ)若依次成等差数列,且公差为2.求的值; (Ⅱ)若,,试用表示的周长,并求周长的最大值 【答案】(1)或.(2), 【解析】 试题分析:(Ⅰ)由题意可得 a=c-4、b=c-2.又因∠MCN=π,,可得恒等变形得c2-9c+14=0,再结合c>4,可得c的值. (Ⅱ)在△ABC中,由正弦定理可得AC=2sⅠnθ,BC=,△ABC的周长f(θ)=|AC|+|BC|+|AB|=,再由利用正弦函数的定义域和值域,求得f(θ)取得最大值. 试题解析:(Ⅰ)∵a、b、c成等差,且公差2,∴a=c-4、b=c-2. 又因∠MCN=π,,可得, 恒等变形得c2-9c+14=0,解得c=7,或c=2. 又∵c>4,∴c=7. (Ⅱ)在△ABC中,由正弦定理可得 . ∴△ABC的周长f(θ)=|AC|+|BC|+|AB|= , 又, 当,即时,f(θ)取得最大值. 考点:1.余弦定理;2.正弦定理 18.如图,在三棱锥中,底面是边长为4的正三角形,,底面,点分别为,的中点. (1)求证:平面平面; (2)在线段上是否存在点,使得直线与平面所成的角的正弦值为?若存在,确定点的位置;若不存在,请说明理由. 【答案】(1)见解析(2)见解析 【解析】 【分析】 (1)先证明,,可得平面从而平面平面; (2)由题意可知两两垂直,分别以方向为 轴建立坐标系,求出平面的法向量及,代入公式可得未知量的方程,解之即可. 【详解】(1)证明:∵,为的中点, ∴ 又平面,平面,∴ ∵ ∴平面 ∵平面 ∴平面平面 (2)解:如图,由(1)知,,,点,分别为的中点, ∴,∴,,又, ∴两两垂直,分别以方向为轴建立坐标系. 则,,,, 设, 所以 ,,设平面的法向量,则 ,,令,则,, ∴ 由已知 或(舍去) 故 故线段上存在点,使得直线与平面所成的角的正弦值为, 此时为线段的中点. 【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”. 19.已知 (1)求的轨迹 (2)过轨迹上任意一点作圆的切线,设直线的斜率分别是,试问在三个斜率都存在且不为0的条件下,是否是定值,请说明理由,并加以证明. 【答案】(1)(2)见解析 【解析】 【详解】(1) 如图因为所以四边形是平行四边形 所以, 由得 所以的轨迹是以为焦点的椭圆易知 所以方程为 (2)设,过的斜率为的直线为,由直线与圆相切可得 即: 由已知可知是方程的两个根, 所以由韦达定理: 两式相除: 又因为所以 代入上式可得:即:为一个定值. 20.已知函数. (1)求函数的单调区间; (2)若对任意的,不等式恒成立,求实数的取值范围. 【答案】(1)见解析;(2). 【解析】 【分析】 (1)求导得到,记,令,得到增区间, 得到减区间. (2)记,求其最小值即可,求导,由,令,得或,再分,,,三种情况讨论求解. 【详解】(1),记, 令,得,函数在上单调递增;,得或,函数在或上单调递减. (2)记, 由,,得或, ∵,所以. ①当时,,且时,; 时,, 所以,∴恒成立; ②当时,, 因为,所以,此时单调递增, 且,所以,成立; ③当时,,, 所以存在使得,因此不恒成立, 综上,的取值范围是. 【点睛】本题主要考查导数与函数的单调性以及导数与不等式恒成立问题,还考查了转化化归的思想和运算求解的能力,属于中档题. 21.年月日,国务院总理李克强在做政府工作报告时说,打好精准脱贫攻坚战.江西省贫困县脱贫摘帽取得突破性进展:年,稳定实现扶贫对象“两不愁、三保障”,贫困县全部退出.围绕这个目标,江西正着力加快增收步伐,提高救助水平,改善生活条件,打好产业扶贫、保障扶贫、安居扶贫三场攻坚战.为响应国家政策,老张自力更生开了一间小型杂货店.据长期统计分析,老张的杂货店中某货物每天的需求量在与之间,日需求量(件)的频率分布如下表所示: 己知其成本为每件元,售价为每件元若供大于求,则每件需降价处理,处理价每件元. (1)设每天的进货量为,视日需求量的频率为概率,求在每天进货量为的条件下,日销售量的期望值(用表示); (2)在(1)的条件下,写出和的关系式,并判断为何值时,日利润的均值最大. 【答案】(1)分类讨论,见解析;(2)20件 【解析】 【分析】 (1)根据每天的需求量在与之间,当日需求量时,日销售量为;当日需求量时,日销售量为,然后利用期望公式建立日销售量的期望分段函数模型. (2)由(1)知,当时,;将n换为n+1 ,化简即可.设每天进货量为,日利润为,根据成本为每件元,售价为每件元,若供大于求,则每件需降价处理,处理价每件元.建立利润期望模型,然后作差研究增减性即可. 【详解】(1)当日需求量时,日销售量为; 日需求量时,日销售量为, 故日销售量的期望为: 当时,; 当时,. (2), 设每天进货量为,日利润为, 则,, 由, 又∵,, ∴最大,所以应进货20件时,日利润均值最大. 【点睛】本题主要考查分段函数的实际应用和离散型随机变量的期望,还考查了理解应用和运算求解的能力,属于中档题. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 【选修4-4:坐标系与参数方程】 22.在直角坐标系中,直线的参数方程为,(为参数),在以坐标原点为极点, 轴正半轴为极轴的极坐标系中,曲线. (1)求直线的普通方程和曲线的直角坐标方程; (2)求曲线上的点到直线的距离的最大值. 【答案】(1),(2) 【解析】 分析:(1)消去得直线方程为,极坐标化为直角坐标可得曲线的直角坐标方程为:; (2)设曲线上的点为,由点到直线距离公式可得,则曲线上的点到直线的距离的最大值为. 详解:(1)由,消去得:, 曲线的直角坐标方程为:; (2)设曲线上的点为, 则点到直线的距离为, 当时,, 即曲线上的点到直线的距离的最大值为. 点睛:本题主要考查极坐标与直角坐标的互化,参数方程转化为直角坐标方程的方法等知识,意在考查学生的转化能力和计算求解能力. 【选修4-5:不等式选讲】 23.设a>0,b>0,且a+b=ab. (1)若不等式|x|+|x﹣2|≤a+b恒成立,求实数x的取值范围. (2)是否存在实数a,b,使得4a+b=8?并说明理由. 【答案】(1);(2)见解析 【解析】 【分析】 (1)先求的最小值,然后对绝对值不等式进行分类讨论,得到的取值范围. (2)求出的最小值,然后进行判断 【详解】由,得 ,当且仅当时成立. 不等式即为. 当时,不等式为,此时; 当时,不等式成立,此时; 当时,不等式为,此时; 综上,实数的取值范围是. 由于. 则 . 当且仅当,即时,取得最小值. 所以不存在实数,使得成立. 点睛】本题考查基本不等式,绝对值不等式通过分类讨论进行求解,难度不大,属于简单题.查看更多