- 2021-04-17 发布 |
- 37.5 KB |
- 7页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数列高考复习题含答案
数列练习题 1.{an}是首项a1=1,公差为d=3的等差数列,如果an=2 005,则序号n等于( ). A.667 B.668 C.669 D.670 2.在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5=( ). A.33 B.72 C.84 D.189 3.如果a1,a2,…,a8为各项都大于零的等差数列,公差d≠0,则( ). A.a1a8>a4a5 B.a1a8<a4a5 C.a1+a8<a4+a5 D.a1a8=a4a5+ 4.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则 |m-n|等于( ). A.1 B. C. D. 5.等比数列{an}中,a2=9,a5=243,则{an}的前4项和为( ). A.81 B.120 C.168 D.192 6.若数列{an}是等差数列,首项a1>0,a2 003+a2 004>0,a2 003·a2 004<0,则使前n项和Sn>0成立的最大自然数n是( ). A.4 005 B.4 006 C.4 007 D.4 008 7.已知等差数列{an}的公差为2,若a1,a3,a4成等比数列, 则a2=( ). A.-4 B.-6 C.-8 D. -10 8.设Sn是等差数列{an}的前n项和,若=,则=( ). A.1 B.-1 C.2 D. 9.已知数列-1,a1,a2,-4成等差数列,-1,b1,b2,b3,-4成等比数列,则的值是( ). A. B.- C.-或 D. 10.在等差数列{an}中,an≠0,an-1-+an+1=0(n≥2),若S2n-1=38,则n=( ). A.38 B.20 C.10 D.9 二、填空题 11.已知等比数列{an}中, (1)若a3·a4·a5=8,则a2·a3·a4·a5·a6= . (2)若a1+a2=324,a3+a4=36,则a5+a6= . (3)若S4=2,S8=6,则a17+a18+a19+a20= . 12.在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 . 13.在等差数列{an}中,3(a3+a5)+2(a7+a10+a13)=24,则此数列前13项之和为 . 14.在等差数列{an}中,a5=3,a6=-2,则a4+a5+…+a10= . 15.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)= ;当n>4时,f(n)= . 三、解答题 16.(1)已知数列{an}的前n项和Sn=3n2-2n,求证数列{an}成等差数列. (2)已知,,成等差数列,求证,,也成等差数列. 17.设{an}是公比为 q 的等比数列,且a1,a3,a2成等差数列. (1)求q的值; (2)设{bn}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由. 18.数列{an}的前n项和记为Sn,已知a1=1,an+1=Sn(n=1,2,3…). 求证:数列{}是等比数列. 19. 已知数列{an}是首项为a且公比不等于1的等比数列,Sn为其前n项和,a1,2a7,3a4成等差数列. 求证:12S3,S6,S12-S6成等比数列. 参考答案 一、选择题 1.C 解析:由题设,代入通项公式an=a1+(n-1)d,即2 005=1+3(n-1),∴n=699. 2.C 解析:本题考查等比数列的相关概念,及其有关计算能力. 设等比数列{an}的公比为q(q>0),由题意得a1+a2+a3=21, 即a1(1+q+q2)=21,又a1=3,∴1+q+q2=7. 解得q=2或q=-3(不合题意,舍去), ∴a3+a4+a5=a1q2(1+q+q2)=3×22×7=84. 3.B. 解析:由a1+a8=a4+a5,∴排除C. 又a1·a8=a1(a1+7d)=a12+7a1d, ∴a4·a5=(a1+3d)(a1+4d)=a12+7a1d +12d2>a1·a8. 4.C 解析: 解法1:设a1=,a2=+d,a3=+2d,a4=+3d,而方程x2-2x+m=0中两根之和为2,x2-2x+n=0中两根之和也为2, ∴a1+a2+a3+a4=1+6d=4, ∴d=,a1=,a4=是一个方程的两个根,a1=,a3=是另一个方程的两个根. ∴,分别为m或n, ∴|m-n|=,故选C. 解法2:设方程的四个根为x1,x2,x3,x4,且x1+x2=x3+x4=2,x1·x2=m,x3·x4=n. 由等差数列的性质:若g+s=p+q,则ag+as=ap+aq,若设x1为第一项,x2必为第四项,则x2=,于是可得等差数列为,,,, ∴m=,n=, ∴|m-n|=. 5.B 解析:∵a2=9,a5=243,=q3==27, ∴q=3,a1q=9,a1=3, ∴S4===120. 6.B 解析: 解法1:由a2 003+a2 004>0,a2 003·a2 004<0,知a2 003和a2 004两项中有一正数一负数,又a1>0,则公差为负数,否则各项总为正数,故a2 003>a2 004,即a2 003>0,a2 004<0. ∴S4 006==>0, ∴S4 007=·(a1+a4 007)=·2a2 004<0, 故4 006为Sn>0的最大自然数. 选B. (第6题) 解法2:由a1>0,a2 003+a2 004>0,a2 003·a2 004<0,同解法1的分析得a2 003>0,a2 004<0, ∴S2 003为Sn中的最大值. ∵Sn是关于n的二次函数,如草图所示, ∴2 003到对称轴的距离比2 004到对称轴的距离小, ∴在对称轴的右侧. 根据已知条件及图象的对称性可得4 006在图象中右侧零点B的左侧,4 007,4 008都在其右侧,Sn>0的最大自然数是4 006. 7.B 解析:∵{an}是等差数列,∴a3=a1+4,a4=a1+6, 又由a1,a3,a4成等比数列, ∴(a1+4)2=a1(a1+6),解得a1=-8, ∴a2=-8+2=-6. 8.A 解析:∵===·=1,∴选A. 9.A 解析:设d和q分别为公差和公比,则-4=-1+3d且-4=(-1)q4, ∴d=-1,q2=2, ∴==. 10.C 解析:∵{an}为等差数列,∴=an-1+an+1,∴=2an, 又an≠0,∴an=2,{an}为常数数列, 而an=,即2n-1==19, ∴n=10. 二、填空题 11.(1)32;(2)4;(3)32. 解析:(1)由a3·a5=,得a4=2, ∴a2·a3·a4·a5·a6==32. (2), ∴a5+a6=(a1+a2)q4=4. (3), ∴a17+a18+a19+a20=S4q16=32. 12.216. 解析:本题考查等比数列的性质及计算,由插入三个数后成等比数列,因而中间数必与,同号,由等比中项的中间数为=6,插入的三个数之积为××6=216. 13.26. 解析:∵a3+a5=2a4,a7+a13=2a10, ∴6(a4+a10)=24,a4+a10=4, ∴S13====26. 14.-49. 解析:∵d=a6-a5=-5, ∴a4+a5+…+a10 = = =7(a5+2d) =-49. 15.5,(n+1)(n-2). 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴f(k)=f(k-1)+(k-1). 由f(3)=2, f(4)=f(3)+3=2+3=5, f(5)=f(4)+4=2+3+4=9, …… f(n)=f(n-1)+(n-1), 相加得f(n)=2+3+4+…+(n-1)=(n+1)(n-2). 三、解答题 16.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n=1时,a1=S1=3-2=1, 当n≥2时,an=Sn-Sn-1=3n2-2n-[3(n-1)2-2(n-1)]=6n-5, n=1时,亦满足,∴an=6n-5(n∈N*). 首项a1=1,an-an-1=6n-5-[6(n-1)-5]=6(常数)(n∈N*), ∴数列{an}成等差数列且a1=1,公差为6. (2)∵,,成等差数列, ∴=+化简得2ac=b(a+c). +=====2·, ∴,,也成等差数列. 17.解:(1)由题设2a3=a1+a2,即2a1q2=a1+a1q, ∵a1≠0,∴2q2-q-1=0, ∴q=1或-. (2)若q=1,则Sn=2n+=. 当n≥2时,Sn-bn=Sn-1=>0,故Sn>bn. 若q=-,则Sn=2n+ (-)=. 当n≥2时,Sn-bn=Sn-1=, 故对于n∈N+,当2≤n≤9时,Sn>bn;当n=10时,Sn=bn;当n≥11时,Sn<bn. 18.证明:∵an+1=Sn+1-Sn,an+1=Sn, ∴(n+2)Sn=n(Sn+1-Sn),整理得nSn+1=2(n+1) Sn, 所以=. 故{}是以2为公比的等比数列. 19.证明:由a1,2a7,3a4成等差数列,得4a7=a1+3a4,即4 a1q6=a1+3a1q3, 变形得(4q3+1)(q3-1)=0, ∴q3=-或q3=1(舍). 由===; =-1=-1=1+q6-1=; 得=. ∴12S3,S6,S12-S6成等比数列.查看更多