- 2021-04-17 发布 |
- 37.5 KB |
- 5页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2021高考数学一轮复习课时作业53随机事件的概率文
课时作业53 随机事件的概率 [基础达标] 一、选择题 1.下列说法正确的是( ) A.某事件发生的概率是P(A)=1.1 B.不可能事件的概率为0,必然事件的概率为1 C.小概率事件就是不可能发生的事件,大概率事件就是必然要发生的事件 D.某事件发生的概率是随着试验次数的变化而变化的 解析:对于A,事件发生的概率范围为[0,1],故A错;对于C,小概率事件有可能发生,大概率事件不一定发生,故C错;对于D,事件的概率是常数,不随试验次数的变化而变化,故D错. 答案:B 2.[2020·安徽黄山检测]从1,2,3,4,5这5个数中任取3个不同的数,则取出的3个数可作为三角形的三边边长的概率是( ) A. B. C. D. 解析:从1,2,3,4,5这5个数中任取3个不同的数的基本事件有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10个,取出的3个数可作为三角形的三边边长的基本事件有(2,3,4),(2,4,5),(3,4,5),共3个,故所求概率P=.选A. 答案:A 3.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为( ) A.两个任意事件 B.互斥事件 C.非互斥事件 D.对立事件 解析:因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件. 答案:B 4.[2020·湖南常德检测]现有一枚质地均匀且表面分别标有1、2、3、4、5、6的正方体骰子,将这枚骰子先后抛掷两次,这两次出现的点数之和大于点数之积的概率为( ) - 5 - A. B. C. D. 解析:将这枚骰子先后抛掷两次的基本事件 总数为6×6=36(个), 这两次出现的点数之和大于点数之积包含的基本事件有 (1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(3,1),(4,1),(5,1),(6,1),共11个, ∴这两次出现的点数之和大于点数之积的概率为P=.故选D. 答案:D 5.口袋中有100个大小相同的红球、白球、黑球,其中红球45个,从口袋中摸出一个球,摸出白球的概率为0.23,则摸出黑球的概率为( ) A.0.45 B.0.67 C.0.64 D.0.32 解析:设“摸出一个红球”为事件A,“摸出一个白球”为事件B,“摸出一个黑球”为事件C,显然事件A,B,C都互斥,且C与A+B对立. 因为P(A)==0.45,P(B)=0.23, 所以P(A+B)=P(A)+P(B)=0.45+0.23=0.68, P(C)=1-P(A+B)=1-0.68=0.32. 答案:D 二、填空题 6.(1)某人投篮3次,其中投中4次是________事件; (2)抛掷一枚硬币,其落地时正面朝上是________事件; (3)三角形的内角和为180°是________事件. 解析:(1)共投篮3次,不可能投中4次; (2)硬币落地时正面和反面朝上都有可能; (3)三角形的内角和等于180°. 答案:(1)不可能 (2)随机 (3)必然 7.口袋内装有一些除颜色不同之外其他均相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28.若红球有21个,则黑球有________个. 解析:摸到黑球的概率为1-0.42-0.28=0.3.设黑球有n个,则=,故n=15. - 5 - 答案:15 8.对飞机连续射击两次,每次发射一枚炮弹.设A={两次都击中飞机},B={两次都没击中飞机},C={恰有一次击中飞机},D={至少有一次击中飞机},其中彼此互斥的事件是________________________,互为对立事件的是________________. 解析:设I为对飞机连续射击两次所发生的所有情况,因为A∩B=∅,A∩C=∅,B∩C=∅,B∩D=∅.故A与B,A与C,B与C,B与D为彼此互斥事件,而B∩D=∅,B∪D=I,故B与D互为对立事件. 答案:A与B,A与C,B与C,B与D B与D 三、解答题 9.某超市有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C.求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率. 解析:(1)P(A)=,P(B)==,P(C)==. (2)因为事件A,B,C两两互斥,所以P(A∪B∪C)=P(A)+P(B)+P(C)=++=. 故1张奖券的中奖概率为. 10.[2020·河南八市重点高中质量监测]某校在高三抽取了500名学生,记录了他们选修A、B、C三门课的情况,如下表: 科目 学生人数 A B C 120 是 否 是 60 否 否 是 70 是 是 否 50 是 是 是 150 否 是 是 50 是 否 否 (1)试估计该校高三学生在A、B、C三门选修课中同时选修两门课的概率; (2)若某高三学生已选修A门课,则该学生同时选修B、C中哪门课的可能性大? 解析:(1)由频率估计概率得所求概率 - 5 - P==0.68. (2)若某学生已选修A门课,则该学生同时选修B门课的概率为P==, 选修C门课的概率为P==, 因为<, 所以该学生同时选修C门课的可能性大. [能力挑战] 11.掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A+发生的概率为( ) A. B. C. D. 解析:由于事件总数为6,故P(A)==.P(B)==,从而P()=1-P(B)=1-=,且A与互斥,故P(A+)=P(A)+P()=+=.故选C. 答案:C 12.若A,B互为对立事件,其概率分别为P(A)=,P(B)=,且x>0,y>0,则x+y的最小值为( ) A.7 B.8 C.9 D.10 解析:由题意知+=1,则x+y=(x+y)·=5+≥9,当且仅当=,即x=2y时等号成立.故选C. 答案:C 13.一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红球的概率为,取得两个绿球的概率为,则取得两个同颜色的球的概率为________;至少取得一个红球的概率为________. - 5 - 解析:(1)由于“取得两个红球”与“取得两个绿球”是互斥事件,取得两个同色球,只需要互斥事件有一个发生即可,因而取得两个同色球的概率为 P=+=. (2)由于事件A“至少取得一个红球”与事件B“取得两个绿球”是对立事件,则至少取得一个红球的概率为P(A)=1-P(B)=1-=. 答案: - 5 -查看更多