- 2021-04-16 发布 |
- 37.5 KB |
- 19页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
中考数学试题分类汇编矩形菱形正方形
20. (2009山西省太原市)如图,是边上一点,. (1)在图中作的角平分线,交于点;(要求:尺规作图,保留作图痕迹,不写作法和证明) (2)在(1)中,过点画的垂线,垂足为点,交于点,连接,将图形补充完整,并证明四边形是菱形. A O E N M 21. (2009山西省太原市) 问题解决 图(1) A B C D E F M N 如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值. 方法指导: 为了求得的值,可先求、的长,不妨设:=2 类比归纳 在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示) 联系拓广 图(2) N A B C D E F M 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示) 22. (2009襄樊市)如图所示,在中,将绕点顺时针方向旋转得到点在上,再将沿着所在直线翻转得到连接 (1)求证:四边形是菱形; (2)连接并延长交于连接请问:四边形是什么特殊平行四边形?为什么? A D F C E G B 24. (2009年安顺)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。 (1) 求证:BD=CD; (2) 如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。 (2009重庆綦江)如图,在矩形ABCD中,是边上的点,AE=BC,DF⊥AE,垂足为F,连接DE. (1)求证:; (2)如果,求的值. 25.(2009年北京市)阅读下列材料: 小明遇到一个问题:5个同样大小的正方形纸片排列形式如图1所示,将它们分割后拼接成一个新的正方形.他的做法是:按图2所示的方法分割后,将三角形纸片①绕AB的中点O旋转至三角形纸片②处,依此方法继续操作,即可拼接成一个新的正方形DEFG.请你参考小明的做法解决下列问题: (1)现有5个形状、大小相同的矩形纸片,排列形式如图3所示.请将其分割后拼接成一个平行四边形.要求:在图3中画出并 指明拼接成的平行四边形(画出一个符合条件的平 行四边形即可); (2)如图4,在面积为2的平行四边形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,分别连结AF、BG、CH、DE得到一个新的平行四边形MNPQ请在图4中探究平行四边形MNPQ面积的大小(画图并直接写出结果). 26. (2009年北京市)在中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转得到线段EF(如图1)(1)在图1中画图探究: ①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明; ②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E 逆时针旋转得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论. (2)若AD=6,tanB=,AE=1,在①的条件下,设CP1=,S=,求与之间的函数关系式,并写出自变量的取值范围. 29.(2009年安徽)学校植物园沿路护栏纹饰部分设计成若干个全等菱形图案,每增加一个菱形图案,纹饰长度就增加dcm,如图所示.已知每个菱形图案的边长cm ,其一个内角为60°. 60° …… d L 第19题图 (1)若d=26,则该纹饰要231个菱形图案,求纹饰的长度L; (2)当d=20时,若保持(1)中纹饰长度不变,则需要多少个这样的菱形图案? ③ ④ ① ② 30.(2009年安徽).如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰 能拼成一个矩形(非正方形). (1)画出拼成的矩形的简图; (2)求的值. 31.(2009年郴州市)如图9,E是正方形ABCD对角线BD上的一点,求证:AE=CE. D C E B A 32.(2009年陕西省) 问题探究 (1)请在图①的正方形ABCD内,画出使∠APB=90°的一个点P,并说明理由. (2)请在图②的正方形ABCD内(含边),画出使∠APB=60°的所有的点P,并说明理由. 问题解决 如图③,现有一块矩形钢板ABCD,AB=4,BC=3,工人师傅想用它裁出两块全等的、面积最大的△APB和△CP’D钢板,且∠APB=∠CP’D=60°,请你在图③中画出符合要求的点P和P’,并求出△APB的面积(结果保留根号). 33.(2009重庆綦江)如图,在矩形ABCD中,是边上的点,AE=BC,DF⊥AE,垂足为F,连接DE. (1)求证:; (2)如果,求的值. D A B C E F 34.(2009威海)如图1,在正方形中,分别为边上的点,,连接交点为. (1)如图2,连接,试判断四边形的形状,并证明你的结论; 1) D C B A O H G F E E B A D C G F H ) (2)将正方形沿线段剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形的边长为3cm,,则图3中阴影部分的面积为_________. 35.(2009年贵州省黔东南州)如图,l1、l2、l3、l4是同一平面内的四条平行直线,且每相邻的两条平行直线间的距离为h,正方形ABCD的四个顶点分别在这四条直线上,且正方形ABCD的面积是25。 (1)连结EF,证明△ABE、△FBE、△EDF、△CDF的面积相等。 (2)求h的值。 36.(2009年江苏省)如图,在梯形中,两点在边上,且四边形是平行四边形. A D C F E B (1)与有何等量关系?请说明理由; (2)当时,求证:是矩形. 37.(2009年浙江省绍兴市)若从矩形一边上的点到对边的视角是直角,则称该点为直角点.例如,如图的矩形中,点在边上,连,,则点为直角点. (1)若矩形一边上的直角点为中点,问该矩形的邻边具有何种数量关系?并说明理由; (2)若点分别为矩形边,上的直角点,且,求的长. 38.(2009年广西南宁)如图13-1,在边长为5的正方形中,点、分别是、边上的点,且,. (1)求∶的值; (2)延长交正方形外角平分线(如图13-2),试判断的大小关系,并说明理由; (3)在图13-2的边上是否存在一点,使得四边形是平行四边形?若存在,请给予证明;若不存在,请说明理由. 图13-1 A D C B E 图13-2 B C E D A F P F 39.(2009年清远)如图,已知正方形,点是上的一点,连结,以为一边,在的上方作正方形,连结. 求证: E B C G D F A 40.(2009年衢州)如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内. 求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ. A C B D P Q 42.(2009年广州市)如图12,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P。 (1)若AG=AE,证明:AF=AH; (2)若∠FAH=45°,证明:AG+AE=FH; (3)若RtΔGBF的周长为1,求矩形EPHD的面积。 44.(2009年济宁市)在平面直角坐标中,边长为2的正方形的两顶点、分别在轴、轴的正半轴上,点在原点.现将正方形绕点顺时针旋转,当点第一次落在直线上时停止旋转,旋转过程中,边交直线于点,边交轴于点(如图). O A B C M N (1)求边在旋转过程中所扫过的面积; (2)旋转过程中,当和平行时,求正方形 旋转的度数; (3)设的周长为,在旋转正方形 的过程中,值是否有变化?请证明你的结论. 45.(2009年衡阳市)如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC和外角的平分线,BE⊥AE. (1)求证:DA⊥AE; (2)试判断AB与DE是否相等?并证明你的结论. A B C D E F 46.(2009年南充)如图5,ABCD是正方形,点G是BC上的任意一点,于E,,交AG于F. 求证:. D C B A E F G 48.(2009年湖州)如图:已知在中, ,为边的中点,过点作, 垂足分别为. (1) 求证:; (2)若,求证:四边形是正方形. D C B E A F 49.(2009临沂)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.,且EF交正方形外角的平行线CF于点F,求证:AE=EF. 经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以. 在此基础上,同学们作了进一步的研究: (1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由; (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由. A D F C G E B 图1 A D F C G E B 图2 A D F C G E B 图3 . 51.(2009年遂宁)如图,已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点. ⑴求证:EF+GH=5cm; ⑵求当∠APD=90o时,的值. 52.(2009年咸宁市)如图,将矩形沿对角线剪开,再把沿方向平移得到. (1)证明; C B A D (第19题) (2)若,试问当点在线段上的什么位置时,四边形是菱形,并请说明理由. 53.(09湖北宜昌)已知:如图1,把矩形纸片ABCD折叠,使得顶点A与边DC上的动点P重合(P不与点D,C重合), MN为折痕,点M,N分别在边BC, AD上,连接AP,MP,AM, AP与MN相交于点F.⊙O过点M,C,P. (1)请你在图1中作出⊙O(不写作法,保留作图痕迹); (2)与 是否相等?请你说明理由; (3)随着点P的运动,若⊙O与AM相切于点M时,⊙O又与AD相切于点H. 设AB为4,请你通过计算,画出这时的图形.(图2,3供参考) 图1 图2 图3 (第3题) 54.(09湖南邵阳)如图(十二),直线的解析式为,它与轴、轴分别相交于两点.平行于直线的直线从原点出发,沿轴的正方形以每秒1个单位长度的速度运动,它与轴、轴分别相交于两点,设运动时间为秒(). (1)求两点的坐标; (2)用含的代数式表示的面积; (3)以为对角线作矩形,记和重合部分的面积为, O M A P N y l m x B O M A P N y l m x B E P F 图十二 ①当时,试探究与之间的函数关系式; ②在直线的运动过程中,当为何值时,为面积的? 55.(2009年肇庆市)如图 ,ABCD是菱形,对角线AC与BD相交于O,. O D C B A (1)求证:△ABD是正三角形; (2)求 AC的长(结果可保留根号). 56.(2009年肇庆市)如图 ,ABCD是正方形.G是 BC 上的一点,DE⊥AG于 E,BF⊥AG于 F. A D E F C G B (1)求证:; (2)求证:. 57.(2009年山西省)在中,将绕点顺时针旋转角得交于点,分别交于两点. (1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论; A D B E C F A D B E C F (2)如图2,当时,试判断四边形的形状,并说明理由; (3)在(2)的情况下,求的长. 58.(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合. (1)求的面积; (2)求矩形的边与的长; (3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围. A D B E O C F x y y (G) 60.(2009年黄石市)如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点. (1)探究:线段与的数量关系并加以证明; (2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由; (3)当点运动到何处,且满足什么条件时,四边形是正方形? A F N D C B M E O 61.(2009年黄石市)正方形在如图所示的平面直角坐标系中,在轴正半轴上,在轴的负半轴上,交轴正半轴于交轴负半轴于,,抛物线过三点. (1)求抛物线的解析式;(3分) (2)是抛物线上间的一点,过点作平行于轴的直线交边于,交所在直线于,若,则判断四边形的形状;(3分) (3)在射线上是否存在动点,在射线上是否存在动点,使得且,若存在,请给予严格证明,若不存在,请说明理由.(4分) O y x B E A D C F 62.(2009年广东省)正方形边长为4,、分别是、上的两个动点, 当点在上运动时,保持和垂直, (1)证明:; (2)设,梯形的面积为,求与之间的函数关系式;当点运动到什么位置时,四边形面积最大,并求出最大面积; (3)当点运动到什么位置时,求此时的值. D M A B C N 63.(2009年广东省)在菱形中,对角线与相交于点,.过点作交的延长线于点. (1)求的周长; (2)点为线段上的点,连接并延长交于点. 求证:. A Q D E B P C O . 65.(2009年安徽)20.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰 能拼成一个矩形(非正方形). (1)画出拼成的矩形的简图; 【解】 (2)求的值. 【解】 66.(2009湖北荆州年)把一个正方形分成面积相等的四个三角形的方法有很多,除了可以分成能相互全等的四个三角形外,你还能用三种不同的方法将正方形分成面积相等的四个三角形吗?请分别画出示意图。 67.(2009年湖北荆州)如图①,已知两个菱形ABCD和EFGH是以坐标原点O为位似中心的位似图形(菱形ABCD与菱形EFGH的位似比为2︰1),∠BAD=120°,对角线均在坐标轴上,抛物线经过AD的中点M. ⑴填空:A点坐标为 ,D点坐标为 ; ⑵操作:如图②,固定菱形ABCD,将菱形EFGH绕O点顺时针方向旋转度角,并延长OE交AD于P,延长OH交CD于Q. 探究1:在旋转的过程中是否存在某一角度,使得四边形AFEP是平行四边形?若存在,请推断出的值;若不存在,说明理由; 探究2:设AP=,四边形OPDQ的面积为,求与之间的函数关系式,并指出的取值范围. x y O M H G F E D C B A 图① H G F E D C B A 图② x y O Q P 68.(2009年云南省)如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M. (1)求证:△ABC≌△DCB ; B C A D M N (2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论. 69.(2009年佳木斯中考卷第25题)如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E. (1)试找出一个与△AED全等的三角形,并加以证明. (2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于G,PH⊥EC于H,试求PG+PH的值,并说明理由. 70.(2009厦门)23.已知四边形ABCD,AD//BC,连接BD. (1) 小明说:“若添加条件,则四边形ABCD是矩形”.你认为小明的说法是否正确,若正确请说明理由,若不正确,请举出一个反例. (2) 若BD平分∠ABC,∠DBC=∠BDC,tan∠DBC=1,求证:四边形ABCD 是正方形. 71.(2009四川绵阳)如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90°,使EF交矩形的外角平分线BF于点F,设C(m,n). (1)若m = n时,如图,求证:EF = AE; (2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由. x O E B A y C F x O E B A y C F x O E B A y C F (3)若m = tn(t>1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标. 72.(2009年广东省)在菱形中,对角线与相交于点,.过点作交的延长线于点. (1)求的周长; (2)点为线段上的点,连接并延长交于点. 求证:. A Q D E B P C O 73.(2009年山西省)在中,将绕点顺时针旋转角得交于点,分别交于两点. (1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论; A D B E C F A D B E C F (2)如图2,当时,试判断四边形的形状,并说明理由; (3)在(2)的情况下,求的长. 74.(2009年山西省)如图,已知直线与直线相交于点分别交轴于两点.矩形的顶点分别在直线上,顶点都在轴上,且点与点重合. (1)求的面积; (2)求矩形的边与的长; (3)若矩形从原点出发,沿轴的反方向以每秒1个单位长度的速度平移,设移动时间为秒,矩形与重叠部分的面积为,求关于的函数关系式,并写出相应的的取值范围. A D B E O C F x y y (G) 8.(2009年黄石市)如图,中,点是边上一个动点,过作直线,设交的平分线于点,交的外角平分线于点. (1)探究:线段与的数量关系并加以证明; (2)当点在边上运动时,四边形会是菱形吗?若是,请证明,若不是,则说明理由; (3)当点运动到何处,且满足什么条件时,四边形是正方形? A F N D C B M E O 76.(2009年铁岭市)是等边三角形,点是射线上的一个动点(点不与点重合),是以为边的等边三角形,过点作的平行线,分别交射线于点,连接. (1)如图(a)所示,当点在线段上时. ①求证:; ②探究四边形是怎样特殊的四边形?并说明理由; (2)如图(b)所示,当点在的延长线上时,直接写出(1)中的两个结论是否成立? (3)在(2)的情况下,当点运动到什么位置时,四边形是菱形?并说明理由. A G C D B F E 图(a) A D C B F E G 图(b) 77.(2009青海)请阅读,完成证明和填空. A A A B B B C C C D D O O O M M M N N N E 图12-1 图12-2 图12-3 … 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下: (1)如图12-1,正三角形中,在边上分别取点,使,连接,发现,且. 请证明:. (2)如图12-2,正方形中,在边上分别取点,使,连接,那么 ,且 度. (3)如图12-3,正五边形中,在边上分别取点,使,连接,那么 ,且 度. (4)在正边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现: . 78.(2009呼和浩特)如图所示,正方形的边在正方形的边上,连接. (1)求证:. (2)图中是否存在通过旋转能够互相重合的两个三角形?若存在,说出旋转过程;若不存在,请说明理由. E F G D A B C 79.(2009龙岩)在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DM交AC于点N. (1)如图25-1,当点M在AB边上时,连接BN. ①求证:; ②若∠ABC = 60°,AM = 4,∠ABN =,求点M到AD的距离及tan的值; (2)如图25-2,若∠ABC = 90°,记点M运动所经过的路程为x(6≤x≤12). 试问:x为何值时,△ADN为等腰三角形. C B M A N D (图25-1) C M B N A D (图25-2) 80.(2009年抚顺市)如图所示,已知:中,. (1)尺规作图:作的平分线交于点(只保留作图痕迹,不写作法); (2)在(1)所作图形中,将沿某条直线折叠,使点与点重合,折痕交于点,交于点,连接,再展回到原图形,得到四边形. 试判断四边形的形状,并证明; B C A 若,求四边形的周长和的长.查看更多