- 2021-04-16 发布 |
- 37.5 KB |
- 34页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2019年重庆市中考数学试卷(b卷)含答案
2019年重庆市中考数学试卷(B卷) 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。 1.(4分)5的绝对值是( ) A.5 B.﹣5 C.15 D.-15 2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是( ) A. B. C. D. 3.(4分)下列命题是真命题的是( ) A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3 B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9 C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3 D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为( ) A.60° B.50° C.40° D.30° 5.(4分)抛物线y=﹣3x2+6x+2的对称轴是( ) A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 6.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A.13 B.14 C.15 D.16 7.(4分)估计5+2×10的值应在( ) A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 8.(4分)根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是( ) A.5 B.10 C.19 D.21 9.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反比例函数y=kx(k>0,x>0)经过点C,则k的值等于( ) A.10 B.24 C.48 D.50 10.(4分)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为( ) (参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51) A.65.8米 B.71.8米 C.73.8米 D.119.8米 11.(4分)若数a使关于x的不等式组x3-2≤14(x-7),6x-2a>5(1-x)有且仅有三个整数解,且使关于y的分式方程1-2yy-1-a1-y=-3的解为正数,则所有满足条件的整数a的值之和是( ) A.﹣3 B.﹣2 C.﹣1 D.1 12.(4分)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( ) A.8 B.42 C.22+4 D.32+2 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。 13.(4分)计算:(3-1)0+(12)﹣1= . 14.(4分)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 . 15.(4分)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 . 16.(4分)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是 . 17.(4分)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为 米. 18.(4分)某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83 .甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 . 三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。 19.(10分)计算: (1)(a+b)2+a(a﹣2b); (2)m﹣1+2m-6m2-9+2m+2m+3. 20.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D. (1)若∠C=42°,求∠BAD的度数; (2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE. 21.(10分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据: 4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.1 活动后被测查学生视力数据: 4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.1 5.1 活动后被测查学生视力频数分布表 分组 频数 4.0≤x<4.2 1 4.2≤x<4.4 2 4.4≤x<4.6 b 4.6≤x<4.8 7 4.8≤x<5.0 12 5.0≤x<5.2 4 根据以上信息回答下列问题: (1)填空:a= ,b= ,活动前被测查学生视力样本数据的中位数是 ,活动后被测查学生视力样本数据的众数是 ; (2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果. 22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”. 定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”. 例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位. (1)请直接写出1949到2019之间的“纯数”; (2)求出不大于100的“纯数”的个数,并说明理由. 23.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示. x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y … ﹣6 ﹣4 ﹣2 0 ﹣2 ﹣4 ﹣6 … (1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴. (2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离. (3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小. 24.(10分)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费. (1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位? (2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少310a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少14a %.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518a%,求a的值. 25.(10分)在▱ABCD中,BE平分∠ABC交AD于点E. (1)如图1,若∠D=30°,AB=6,求△ABE的面积; (2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC. 四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。 26.(8分)在平面直角坐标系中,抛物线y=-34x2+32x+23与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q. (1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+32KG的最小值及点H的坐标. (2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由. 2019年重庆市中考数学试卷(B卷) 参考答案与试题解析 一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。 1.(4分)5的绝对值是( ) A.5 B.﹣5 C.15 D.-15 【解答】解:在数轴上,数5所表示的点到原点0的距离是5; 故选:A. 2.(4分)如图是一个由5个相同正方体组成的立体图形,它的主视图是( ) A. B. C. D. 【解答】解:从正面看易得第一层有4个正方形,第二层有一个正方形,如图所示: . 故选:D. 3.(4分)下列命题是真命题的是( ) A.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为2:3 B.如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9 C.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为2:3 D.如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为4:9 【解答】解:A、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是假命题; B、如果两个三角形相似,相似比为4:9,那么这两个三角形的周长比为4:9,是真命题; C、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题; D、如果两个三角形相似,相似比为4:9,那么这两个三角形的面积比为16:81,是假命题; 故选:B. 4.(4分)如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,若∠C=40°,则∠B的度数为( ) A.60° B.50° C.40° D.30° 【解答】解:∵AC是⊙O的切线, ∴AB⊥AC,且∠C=40°, ∴∠ABC=50°, 故选:B. 5.(4分)抛物线y=﹣3x2+6x+2的对称轴是( ) A.直线x=2 B.直线x=﹣2 C.直线x=1 D.直线x=﹣1 【解答】解:∵y=﹣3x2+6x+2=﹣3(x﹣1)2+5, ∴抛物线顶点坐标为(1,5),对称轴为x=1. 故选:C. 6.(4分)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为( ) A.13 B.14 C.15 D.16 【解答】解:设要答对x道. 10x+(﹣5)×(20﹣x)>120, 10x﹣100+5x>120, 15x>220, 解得:x>443, 根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题. 故选:C. 7.(4分)估计5+2×10的值应在( ) A.5和6之间 B.6和7之间 C.7和8之间 D.8和9之间 【解答】解:5+2×10=5+25=35, ∵35=45, 6<45<7, 故选:B. 8.(4分)根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是﹣2,若输入x的值是﹣8,则输出y的值是( ) A.5 B.10 C.19 D.21 【解答】解:当x=7时,可得-7+b2=-2, 可得:b=3, 当x=﹣8时,可得:y=﹣2×(﹣8)+3=19, 故选:C. 9.(4分)如图,在平面直角坐标系中,菱形OABC的边OA在x轴上,点A(10,0),sin∠COA=45.若反比例函数y=kx(k>0,x>0)经过点C,则k的值等于( ) A.10 B.24 C.48 D.50 【解答】解:如图,过点C作CE⊥OA于点E, ∵菱形OABC的边OA在x轴上,点A(10,0), ∴OC=OA=10, ∵sin∠COA=45=CEOC. ∴CE=8, ∴OE=CO2-CE2=6 ∴点C坐标(6,8) ∵若反比例函数y=kx(k>0,x>0)经过点C, ∴k=6×8=48 故选:C. 10.(4分)如图,AB是垂直于水平面的建筑物.为测量AB的高度,小红从建筑物底端B点出发,沿水平方向行走了52米到达点C,然后沿斜坡CD前进,到达坡顶D点处,DC=BC.在点D处放置测角仪,测角仪支架DE高度为0.8米,在E点处测得建筑物顶端A点的仰角∠AEF为27°(点A,B,C,D,E在同一平面内).斜坡CD的坡度(或坡比)i=1:2.4,那么建筑物AB的高度约为( ) (参考数据sin27°≈0.45,cos27°≈0.89,tan27°≈0.51) A.65.8米 B.71.8米 C.73.8米 D.119.8米 【解答】解:过点E作EM⊥AB与点M,延长ED交BC于G, ∵斜坡CD的坡度(或坡比)i=1:2.4,BC=CD=52米, ∴设DG=x,则CG=2.4x. 在Rt△CDG中, ∵DG2+CG2=DC2,即x2+(2.4x)2=522,解得x=20, ∴DG=20米,CG=48米, ∴EG=20+0.8=20.8米,BG=52+48=100米. ∵EM⊥AB,AB⊥BG,EG⊥BG, ∴四边形EGBM是矩形, ∴EM=BG=100米,BM=EG=20.8米. 在Rt△AEM中, ∵∠AEM=27°, ∴AM=EM•tan27°≈100×0.51=51米, ∴AB=AM+BM=51+20.8=71.8米. 故选:B. 11.(4分)若数a使关于x的不等式组x3-2≤14(x-7),6x-2a>5(1-x)有且仅有三个整数解,且使关于y的分式方程1-2yy-1-a1-y=-3的解为正数,则所有满足条件的整数a的值之和是( ) A.﹣3 B.﹣2 C.﹣1 D.1 【解答】解:由关于x的不等式组x3-2≤14(x-7),6x-2a>5(1-x)得x≤3x>2a+511 ∵有且仅有三个整数解, ∴2a+511<x≤3,x=1,2,或3. ∴0≤2a+511<1, ∴-52<a<3; 由关于y的分式方程1-2yy-1-a1-y=-3得1﹣2y+a=﹣3(y﹣1), ∴y=2﹣a, ∵解为正数,且y=1为增根, ∴a<2,且a≠1, ∴-52<a<2,且a≠1, ∴所有满足条件的整数a的值为:﹣2,﹣1,0,其和为﹣3. 故选:A. 12.(4分)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得△AEF,连接DF.过点D作DG⊥DE交BE于点G.则四边形DFEG的周长为( ) A.8 B.42 C.22+4 D.32+2 【解答】解:∵∠ABC=45°,AD⊥BC于点D, ∴∠BAD=90°﹣∠ABC=45°, ∴△ABD是等腰直角三角形, ∴AD=BD, ∵BE⊥AC, ∴∠GBD+∠C=90°, ∵∠EAD+∠C=90°, ∴∠GBD=∠EAD, ∵∠ADB=∠EDG=90°, ∴∠ADB﹣∠ADG=∠EDG﹣∠ADG, 即∠BDG=∠ADE, ∴△BDG≌△ADE(ASA), ∴BG=AE=1,DG=DE, ∵∠EDG=90°, ∴△EDG为等腰直角三角形, ∴∠AED=∠AEB+∠DEG=90°+45°=135°, ∵△AED沿直线AE翻折得△AEF, ∴△AED≌△AEF, ∴∠AED=∠AEF=135°,ED=EF, ∴∠DEF=360°﹣∠AED﹣∠AEF=90°, ∴△DEF为等腰直角三角形, ∴EF=DE=DG, 在Rt△AEB中, BE=AB2-AE2=32-12=22, ∴GE=BE﹣BG=22-1, 在Rt△DGE中, DG=22GE=2-22, ∴EF=DE=2-22, 在Rt△DEF中, DF=2DE=22-1, ∴四边形DFEG的周长为: GD+EF+GE+DF =2(2-22)+2(22-1) =32+2, 故选:D. 二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。 13.(4分)计算:(3-1)0+(12)﹣1= 3 . 【解答】解:(3-1)0+(12)﹣1=1+2=3; 故答案为3; 14.(4分)2019年1月1日,“学习强国”平台全国上线,截至2019年3月17日止,重庆市党员“学习强国”APP注册人数约1180000,参学覆盖率达71%,稳居全国前列.将数据1180000用科学记数法表示为 1.18×106 . 【解答】解:1180000用科学记数法表示为:1.18×106, 故答案为:1.18×106. 15.(4分)一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.连续掷两次骰子,在骰子向上的一面上,第二次出现的点数是第一次出现的点数的2倍的概率是 112 . 【解答】解:列表得: 1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7 8 3 4 5 6 7 8 9 4 5 6 7 8 9 10 5 6 7 8 9 10 11 6 7 8 9 10 11 12 由表知共有36种等可能结果,其中第二次出现的点数是第一次出现的点数的2倍的有3种结果, 所以第二次出现的点数是第一次出现的点数的2倍的概率为336=112, 故答案为112. 16.(4分)如图,四边形ABCD是矩形,AB=4,AD=22,以点A为圆心,AB长为半径画弧,交CD于点E,交AD的延长线于点F,则图中阴影部分的面积是 82-8 . 【解答】解:连接AE, ∵∠ADE=90°,AE=AB=4,AD=22, ∴sin∠AED=ADAE=224=22, ∴∠AED=45°, ∴∠EAD=45°,∠EAB=45°, ∴AD=DE=22, ∴阴影部分的面积是:(4×22-45×π×42360-22×222)+(45×π×42360-22×222)=82-8, 故答案为:82-8. 17.(4分)一天,小明从家出发匀速步行去学校上学.几分钟后,在家休假的爸爸发现小明忘带数学书,于是爸爸立即匀速跑步去追小明,爸爸追上小明后以原速原路跑回家.小明拿到书后以原速的54快步赶往学校,并在从家出发后23分钟到校(小明被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小明从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小明家到学校的路程为 2080 米. 【解答】解:设小明原速度为x(米/分钟),则拿到书后的速度为1.25x(米/分钟),则家校距离为11x+(23﹣11)×1.25x=26x. 设爸爸行进速度为y(米/分钟),由题意及图形得:11x=(16-11)y(16-11)×(1.25x+y)=1380. 解得:x=80,y=176. ∴小明家到学校的路程为:80×26=2080(米). 故答案为:2080 18.(4分)某磨具厂共有六个生产车间,第一、二、三、四车间毎天生产相同数量的产品,第五、六车间每天生产的产品数量分別是第一车间每天生产的产品数量的34和83 .甲、乙两组检验员进驻该厂进行产品检验,在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是 18:19 . 【解答】解:设第一、二、三、四车间毎天生产相同数量的产品为x个,每个车间原有成品m个,甲组检验员a人,乙组检验员b人,每个检验员的检验速度为c个/天, 则第五、六车间每天生产的产品数量分別是34x和83x, 由题意得,6(x+x+x)+3m=6ac①2(x+34x)+2m=2bc②(2+4)×83x+m=4bc③, ②×2﹣③得,m=3x, 把m=3x分别代入①得,9x=2ac, 把m=3x分别代入②得,192x=2bc, 则a:b=18:19, 甲、乙两组检验员的人数之比是18:19, 故答案为:18:19. 三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。 19.(10分)计算: (1)(a+b)2+a(a﹣2b); (2)m﹣1+2m-6m2-9+2m+2m+3. 【解答】解:(1)(a+b)2+a(a﹣2b); =a2+2ab+b2+a2﹣2ab, =2a2+b2; (2)m﹣1+2m-6m2-9+2m+2m+3. =(m-1)(m+3)m+3+2m+3+2m+2m+3, =m2+2m-3+2+2m+2m+3, =m2+4m+1m+3. 20.(10分)如图,在△ABC中,AB=AC,AD⊥BC于点D. (1)若∠C=42°,求∠BAD的度数; (2)若点E在边AB上,EF∥AC交AD的延长线于点F.求证:AE=FE. 【解答】解:(1)∵AB=AC,AD⊥BC于点D, ∴∠BAD=∠CAD,∠ADC=90°, 又∠C=42°, ∴∠BAD=∠CAD=90°﹣42°=48°; (2)∵AB=AC,AD⊥BC于点D, ∴∠BAD=∠CAD, ∵EF∥AC, ∴∠F=∠CAD, ∴∠BAD=∠F, ∴AE=FE. 21.(10分)为落实视力保护工作,某校组织七年级学生开展了视力保健活动.活动前随机测查了30名学生的视力,活动后再次测查这部分学生的视力.两次相关数据记录如下: 活动前被测查学生视力数据: 4.0 4.1 4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 5.0 5.0 5.1 活动后被测查学生视力数据: 4.0 4.2 4.3 4.4 4.4 4.5 4.5 4.6 4.6 4.6 4.7 4.7 4.7 4.7 4.8 4.8 4.8 4.8 4.8 4.8 4.8 4.9 4.9 4.9 4.9 4.9 5.0 5.0 5.1 5.1 活动后被测查学生视力频数分布表 分组 频数 4.0≤x<4.2 1 4.2≤x<4.4 2 4.4≤x<4.6 b 4.6≤x<4.8 7 4.8≤x<5.0 12 5.0≤x<5.2 4 根据以上信息回答下列问题: (1)填空:a= 5 ,b= 4 ,活动前被测查学生视力样本数据的中位数是 4.65 ,活动后被测查学生视力样本数据的众数是 4.8 ; (2)若视力在4.8及以上为达标,估计七年级600名学生活动后视力达标的人数有多少? (3)分析活动前后相关数据,从一个方面评价学校开展视力保健活动的效果. 【解答】解:(1)由已知数据知a=5,b=4, 活动前被测查学生视力样本数据的中位数是4.6+4.72=4.65, 活动后被测查学生视力样本数据的众数是4.8, 故答案为:5,4,4.65,4.8; (2)估计七年级600名学生活动后视力达标的人数有600×12+430=320(人); (3)活动开展前视力在4.8及以上的有11人,活动开展后视力在4.8及以上的有16人, 视力达标人数有一定的提升(答案不唯一,合理即可). 22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等.现在我们来研究一种特殊的自然数﹣“纯数”. 定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”. 例如:32是“纯数”,因为32+33+34在列竖式计算时各位都不产生进位现象;23不是“纯数”,因为23+24+25在列竖式计算时个位产生了进位. (1)请直接写出1949到2019之间的“纯数”; (2)求出不大于100的“纯数”的个数,并说明理由. 【解答】解:(1)显然1949至1999都不是“纯数”,因为在通过列竖式进行n+(n+1)+(n+2)的运算时要产生进位. 在2000至2019之间的数,只有个位不超过2时,才符合“纯数”的定义. 所以所求“纯数”为2000,2001,2002,2010,2011,2012; (2)不大于100的“纯数”的个数有13个,理由如下: 因为个位不超过2,十位不超过3时,才符合“纯数”的定义, 所以不大于100的“纯数”有:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个. 23.(10分)函数图象在探索函数的性质中有非常重要的作用,下面我们就一类特殊的函数展开探索.画函数y=﹣2|x|的图象,经历分析解析式、列表、描点、连线过程得到函数图象如图所示;经历同样的过程画函数y=﹣2|x|+2和y=﹣2|x+2|的图象如图所示. x … ﹣3 ﹣2 ﹣1 0 1 2 3 … y … ﹣6 ﹣4 ﹣2 0 ﹣2 ﹣4 ﹣6 … (1)观察发现:三个函数的图象都是由两条射线组成的轴对称图形;三个函数解折式中绝对值前面的系数相同,则图象的开口方向和形状完全相同,只有最高点和对称轴发生了变化.写出点A,B的坐标和函数y=﹣2|x+2|的对称轴. (2)探索思考:平移函数y=﹣2|x|的图象可以得到函数y=﹣2|x|+2和y=﹣2|x+2|的图象,分别写出平移的方向和距离. (3)拓展应用:在所给的平面直角坐标系内画出函数y=﹣2|x﹣3|+1的图象.若点(x1,y1)和(x2,y2)在该函数图象上,且x2>x1>3,比较y1,y2的大小. 【解答】解:(1)A(0,2),B(﹣2,0),函数y=﹣2|x+2|的对称轴为x=﹣2; (2)将函数y=﹣2|x|的图象向上平移2个单位得到函数y=﹣2|x|+2的图象; 将函数y=﹣2|x|的图象向左平移2个单位得到函数y=﹣2|x+2|的图象; (3)将函数y=﹣2|x|的图象向上平移1个单位,再向右平移3个单位得到函数y=﹣2|x﹣3|+1的图象. 所画图象如图所示,当x2>x1>3时,y1>y2. 24.(10分)某菜市场有2.5平方米和4平方米两种摊位,2.5平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费. (1)菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位? (2)为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,2.5平方米和4平方米两种摊位的商户分别有40%和20%参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的2.5平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加2a%,毎个摊位的管理费将会减少310a%;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加6a%,每个摊位的管理费将会减少14a%.这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少518a%,求a的值. 【解答】解:(1)设该菜市场共有x个4平方米的摊位,则有2x个2.5平方米的摊位, 依题意,得:20×4x+20×2.5×2x=4500, 解得:x=25. 答:该菜市场共有25个4平方米的摊位. (2)由(1)可知:5月份参加活动一的2.5平方米摊位的个数为25×2×40%=20(个),5月份参加活动一的4平方米摊位的个数为25×20%=5(个). 依题意,得:20(1+2a%)×20×2.5×310a%+5(1+6a%)×20×4×14a%=[20(1+2a%)×20×2.5+5(1+6a%)×20×4]×518a%, 整理,得:a2﹣50a=0, 解得:a1=0(舍去),a2=50. 答:a的值为50. 25.(10分)在▱ABCD中,BE平分∠ABC交AD于点E. (1)如图1,若∠D=30°,AB=6,求△ABE的面积; (2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED﹣AG=FC. 【解答】(1)解:作BO⊥AD于O,如图1所示: ∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°, ∴∠AEB=∠CBE,∠BAO=∠D=30°, ∴BQ=12AB=62, ∵BE平分∠ABC, ∴∠ABE=∠CBE, ∴∠ABE=∠AEB, ∴AE=AB=6, ∴△ABE的面积=12AE×BO=12×6×62=32; (2)证明:作AQ⊥BE交DF的延长线于P,垂足为Q,连接PB、PE,如图2所示: ∵AB=AE,AQ⊥BE, ∴∠ABE=∠AEB,BQ=EQ, ∴PB=PE, ∴∠PBE=∠PEB, ∴∠ABP=∠AEP, ∵AB∥CD,AF⊥CD, ∴AF⊥AB, ∴∠BAF=90°, ∵AQ⊥BE, ∴∠ABG=∠FAP, 在△ABG和△FAP中,∠ABG=∠FAPAB=AF∠BAG=∠AFP=90°, ∴△ABG≌△AFP(ASA), ∴AG=FP, ∵AB∥CD,AD∥BC, ∴∠ABP+∠BPC=180°,∠BCP=∠D, ∵∠AEP+∠PED=180°, ∴∠BPC=∠PED, 在△BPC和△PED中,∠BCP=∠D∠BPC=∠PEDPB=PE, ∴△BPC≌△PED(AAS), ∴PC=ED, ∴ED﹣AG=PC﹣AG=PC﹣FP=FC. 四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。 26.(8分)在平面直角坐标系中,抛物线y=-34x2+32x+23与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点Q. (1)如图1,连接AC,BC.若点P为直线BC上方抛物线上一动点,过点P作PE∥y轴交BC于点E,作PF⊥BC于点F,过点B作BG∥AC交y轴于点G.点H,K分别在对称轴和y轴上运动,连接PH,HK.当△PEF的周长最大时,求PH+HK+32KG的最小值及点H的坐标. (2)如图2,将抛物线沿射线AC方向平移,当抛物线经过原点O时停止平移,此时抛物线顶点记为D′,N为直线DQ上一点,连接点D′,C,N,△D′CN能否构成等腰三角形?若能,直接写出满足条件的点N的坐标;若不能,请说明理由. 【解答】解:(1)如图1中, 对于抛物线y=-34x2+32x+23,令x=0,得到y=23, 令y=0,得到-34x2+32x+23=0,解得x=﹣2或4, ∴C(0,23),A(﹣2,0),B(4,0), 抛物线顶点D坐标(1,934), ∵PF⊥BC, ∴∠PFE=∠BOC=90°, ∵PE∥OC, ∴∠PEF=∠BCO, ∴△PEF∽△BCO, ∴当PE最大时,△PEF的周长最大, ∵B(4,0),C(0,23), ∴直线BC的解析式为y=-32x+23,设P(m,-34m2+32m+23),则E(m,-32m+23), ∴PE=-34m2+32m+23-(-32m+23)=-34m2+3m, ∴当m=2时,PE有最大值, ∴P(2,23), 如图,将直线GO绕点G逆时针旋转60°,得到直线l, 作PM⊥直线l于M,KM′⊥直线l于M′,则PH+HK+32KG=PH+HK+KM′≥PM, ∵P(2,23), ∴∠POB=60°, ∵∠MOG=30°, ∴∠MOG+∠BOC+∠POB=180°, ∴P,O,M共线,可得PM=10, ∴PH+HK+32KG的最小值为10,此时H(1,3). (2)∵A(﹣2,0),C(0,23), ∴直线AC的解析式为y=3x+23, ∵DD′∥AC,D(1,934), ∴直线DD′的解析式为y=3x+534, 设D′(m,3m+534),则平移后抛物线的解析式为y1=-34(x﹣m)2+3m+534, 将(0,0)代入可得m=5或﹣1(舍弃), ∴D′(5,2534), 设N(1,n),∵C(0,23),D′(5,2534), ∴NC2=1+(n﹣23)2,D′C2=52+(2534-23)2,D′N2=(5﹣1)2+(2534-n)2, ①当NC=CD′时,1+(n﹣23)2=52+(2534-23)2, 解得:n=83±31394 ②当NC=D′N时,1+(n﹣23)2=(5﹣1)2+(2534-n)2, 解得:n=6413136 ③当D′C=D′N时,52+(2534-23)2=(5﹣1)2+(2534-n)2, 解得:n=253±10114, 综上所述,满足条件的点N的坐标为(1,83+31394)或(1,83-31394)或(1,6413136)或(1,253+10114)或(1,253-10114). 声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布 日期:2019/6/30 9:35:53;用户:中考培优辅导;邮箱:p5193@xyh.com;学号:27411521查看更多