- 2021-04-16 发布 |
- 37.5 KB |
- 4页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2020学年高二数学下学期第四次统考试题 文(无答案)新版新目标
2019学年度第二学期第四次统考 高二文数 (总分:150分 时间:120分钟) 本试题分第Ⅰ卷和第Ⅱ卷两部分。第Ⅰ卷为选择题,共60分;第Ⅱ卷为非选择题,共90分,满分150分,考试时间为120分钟。 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分。在每小题给出的四个选项中只有一项是符合要求的) 1.已知全集,集合,集合,那么( ) A. B. C. D. 2.已知在复平面内对应的点在第二象限,则实数的取值范围是 ( ) A. B. C. D. 3.我国古代数学家算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣 ( ) A. 104人 B.108人 C.112人 D.120人 4.已知,则的值等于 ( ) A. B. C. D. 5.设命题:,命题:,则是成立的 ( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 6.执行如图所示的程序框图,则输出的的值为 ( ) A.4 B.5 C.6 D.7 7.要得到函数的图象,只需将函数舒中高二统考文数 第2页 (共4页) 的图象 ( ) 4 A. 向左平移 B. 向右平移 C. 向左平移 D. 向右平移 8.下列推理正确的是 ( ) A.如果不买彩票,那么就不能中奖,因为你买了彩票,所以你一定中奖 B.因为,所以 C.若均为正实数,则 D.若,则 9.如图是某个几何体的三视图,则这个几何体 体积是( ) A. B. C. D. 10.椭圆的左焦点为,直线与椭圆相交于点,当的周长最大时,的面积是 ( ) A. B. C. D. 11.四面体中,,,,则四面体外接球的表面积为 ( ) A. B. C. D. 12.已知函数是定义在实数集上的奇函数,若时,,则不等式的解集为 ( ) A. B.,或 C.,或 D.,或 第Ⅱ卷(非选择题,共90分) 二.填空题(本大题共4小题,每小题5分,共20分) 13.设变量,满足约束条件:,则目标函数的最小值为 . 14.已知函数是上的偶函数,若对于,都有,且当时,,则= . 4 15.在中,内角,,所对的边分别是,,,已知,,则 . 16.在中,,为平面内一点,且,为劣弧上一动点,且,则的取值范围为 . 三.解答题(本大题共6小题,共70分) 17.(本小题满分12分) 已知函数. (1)求的单调递增区间; (2)在锐角中,内角所对的边分别是,且,求的最大面积. 18.(本小题满分12分) 按照国家环保部发布的新修订的《环境空气质量标准》,规定:PM2.5的年平均浓度不得超过35微克/立方米,国家环保部门在2016年10月1日到2017年1月30日这120天对全国的PM2.5平均浓度的监测数据统计如下: 组别 PM2.5浓度(微克/立方米) 频数(天) 第一组 32 第二组 64 第三组 16 第四组 115以上 8 (1)在这120天中抽取30天的数据做进一步分析,每一组应抽取多少天? (2)在(Ⅰ)中所抽取的样本PM2.5的平均浓度超过75(微克/立方米)的若干天中,随机抽取2天,求恰好有一天平均浓度超过115(微克/立方米)的概率. 19.(本小题满分12分) 如图,在直三棱柱中,底面是等腰直角三角形,且斜边,侧棱,点为的中点,点在线段上,(为实数). (1)求证:不论取何值时,恒有; (2)当时,求多面体的体积. 20.(本小题满分12分) 已知椭圆上任意一点到两焦点距离之和为,离心率为. (1)求椭圆的标准方程; 4 (2)若直线的斜率为,直线与椭圆C交于两点.点为椭圆上一点,求△PAB的面积的最大值. 21.(本小题满分12分) 已知函数,其中是自然对数的底数,. (1) 若,求曲线在点处的切线方程; (2) (2)若,求的单调区间; (3)若,函数的图象与函数的图象有3个不同的交点,求实数的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程 已知直线的参数方程为 (为参数),曲线的极坐标方程为 ,直线 与曲线交于两点,点, (1)求直线的普通方程与曲线的直角坐标方程; (2)求的值. 23.选修4-5:不等式选讲 设函数,其中, (1)当时,求不等式的解集; 舒中高二统考文数 第4页 (共4页) (2)若不等式的解集为,求实数的值. 4查看更多