- 2021-04-16 发布 |
- 37.5 KB |
- 11页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
高考数学一轮复习精品学案:第1讲 集合
2013年普通高考数学科一轮复习精品学案 第1讲 集 合 一.课标要求: 1.集合的含义与表示 (1)通过实例,了解集合的含义,体会元素与集合的“属于”关系; (2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用; 2.集合间的基本关系 (1)理解集合之间包含与相等的含义,能识别给定集合的子集; (2)在具体情境中,了解全集与空集的含义; 3.集合的基本运算 (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集; (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集; (3)能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。 二.命题走向 有关集合的高考试题,考查重点是集合与集合之间的关系,近年试题加强了对集合的计算化简的考查,并向无限集发展,考查抽象思维能力,在解决这些问题时,要注意利用几何的直观性,注意运用Venn图解题方法的训练,注意利用特殊值法解题,加强集合表示方法的转换和化简的训练。考试形式多以一道选择题为主,分值5分。 预测2013年高考将继续体现本章知识的工具作用,多以小题形式出现,也会渗透在解答题的表达之中,相对独立。具体题型估计为: (1)题型是1个选择题或1个填空题; (2)热点是集合的基本概念、运算和工具作用。 三.要点精讲 1.集合:某些指定的对象集在一起成为集合。 (1)集合中的对象称元素,若a是集合A的元素,记作;若b不是集合A的元素,记作; (2)集合中的元素必须满足:确定性、互异性与无序性; 确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立; 互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素; 无序性:集合中不同的元素之间没有地位差异,集合不同于元素的排列顺序无关; (3)表示一个集合可用列举法、描述法或图示法; 列举法:把集合中的元素一一列举出来,写在大括号内; 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。 具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。 注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。 (4)常用数集及其记法: 非负整数集(或自然数集),记作N; 正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R。 2.集合的包含关系: (1)集合A的任何一个元素都是集合B的元素,则称A是B的子集(或B包含A),记作AB(或); 集合相等:构成两个集合的元素完全一样。若AB且BA,则称A等于B,记作A=B;若AB且A≠B,则称A是B的真子集,记作A B; (2)简单性质:1)AA;2)A;3)若AB,BC,则AC;4)若集合A是n个元素的集合,则集合A有2n个子集(其中2n-1个真子集); 3.全集与补集: (1)包含了我们所要研究的各个集合的全部元素的集合称为全集,记作U; (2)若S是一个集合,AS,则,=称S中子集A的补集; (3)简单性质:1)()=A;2)S=,=S。 4.交集与并集: (1)一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集。交集。 (2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集。。 注意:求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。 5.集合的简单性质: (1) (2) (3) (4); (5)(A∩B)=(A)∪(B),(A∪B)=(A)∩(B)。 四.典例解析 题型1:集合的概念 例1.设集合,若,则下列关系正确的是( ) A. B. C. D. 解:由于中只能取到所有的奇数,而中18为偶数。则。选项为D; 点评:该题考察了元素与集合、集合与集合之间的关系。首先应该分清楚元素与集合之间是属于与不属于的关系,而集合之间是包含与不包含的关系。 例2.设集合P={m|-1<m≤0,Q={m∈R|mx2+4mx-4<0对任意实数x恒成立,则下列关系中成立的是( ) A.PQ B.QP C.P=Q D.P∩Q=Q 解:Q={m∈R|mx2+4mx-4<0对任意实数x恒成立=,对m分类: ①m=0时,-4<0恒成立; ②m<0时,需Δ=(4m)2-4×m×(-4)<0,解得m<0。 综合①②知m≤0, ∴Q={m∈R|m≤0}。 答案为A。 点评:该题考察了集合间的关系,同时考察了分类讨论的思想。集合中含有参数m,需要对参数进行分类讨论,不能忽略m=0的情况。 题型2:集合的性质 例3.已知集合A={1,2,3,4},那么A的真子集的个数是( ) A.15 B.16 C.3 D.4 解:根据子集的计算应有24-1=15(个)。选项为A; 点评:该题考察集合子集个数公式。注意求真子集时千万不要忘记空集是任何非空集合的真子集。同时,A不是A的真子集。 变式题:同时满足条件:①②若,这样的集合M有多少个,举出这些集合来。 答案:这样的集合M有8个。 例4.已知全集,A={1,}如果,则这样的实数是否存在?若存在,求出,若不存在,说明理由。 解:∵; ∴,即=0,解得 当时,,为A中元素; 当时, 当时, ∴这样的实数x存在,是或。 另法:∵ ∴, ∴=0且 ∴或。 点评:该题考察了集合间的关系以及集合的性质。分类讨论的过程中“当时,”不能满足集合中元素的互异性。此题的关键是理解符号是两层含义:。 变式题:已知集合,,,求的值。 解:由可知, (1),或(2) 解(1)得, 解(2)得, 又因为当时,与题意不符, 所以,。 题型3:集合的运算 例5.已知集合M={x|x<3,N={x|log2x>1},则M∩N=( ) A. B.{x|0<x<3 C.{x|1<x<3 D.{x|2<x<3 解:由对数函数的性质,且2>1,显然由易得。从而。故选项为D。 点评:该题考察了不等式和集合交运算。 例6.设集合,,则等于( ) A. B. C. D. 解:,,所以,故选B。 点评:该题考察了集合的交、补运算。 题型4:图解法解集合问题 例7.已知集合A={x||x|≤2,x∈R},B={x|x≥a},且AB,则实数a 的取值范围是_ _。 解:∵A={x|-2≤x≤2},B={x|x≥a},又AB ,利用数轴上覆盖关系:如图所示,因此有a≤-2。 点评:本题利用数轴解决了集合的概念和集合的关系问题。 例8.已知全集I=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N},则( ) A.I=A∪B B.I=(A)∪B C.I=A∪(B) D.I=(A)∪(B) 解:方法一:A中元素是非2的倍数的自然数,B中元素是非4的倍数的自然数,显然,只有C选项正确. 方法二:因A={2,4,6,8…},B={4,8,12,16,…},所以B={1,2,3,5,6,7,9…},所以I=A∪B,故答案为C. 方法三:因BA,所以()A()B,()A∩(B)=A,故I=A∪(A)=A∪(B)。 方法四:根据题意,我们画出Venn图来解,易知BA,如图:可以清楚看到I=A∪(B)是成立的。 点评:本题考查对集合概念和关系的理解和掌握,注意数形结合的思想方法,用无限集考查,提高了对逻辑思维能力的要求。 题型5:集合的应用 例9.向50名学生调查对A、B两事件的态度,有如下结果赞成A的人数是全体的五分之三,其余的不赞成,赞成B的比赞成A的多3人,其余的不赞成;另外,对A、B都不赞成的学生数比对A、B都赞成的学生数的三分之一多1人。问对A、B都赞成的学生和都不赞成的学生各有多少人? 解:赞成A的人数为50×=30,赞成B的人数为30+3=33,如上图,记50名学生组成的集合为U,赞成事件A的学生全体为集合A;赞成事件B的学生全体为集合B。 设对事件A、B都赞成的学生人数为x,则对A、B都不赞成的学生人数为+1,赞成A而不赞成B的人数为30-x,赞成B而不赞成A的人数为33-x。依题意(30-x)+(33-x)+x+(+1)=50,解得x=21。所以对A、B都赞成的同学有21人,都不赞成的有8人。 点评:在集合问题中,有一些常用的方法如数轴法取交并集,韦恩图法等,需要考生切实掌握。本题主要强化学生的这种能力。解答本题的闪光点是考生能由题目中的条件,想到用韦恩图直观地表示出来。本题难点在于所给的数量关系比较错综复杂,一时理不清头绪,不好找线索。画出韦恩图,形象地表示出各数量关系间的联系。 例10.求1到200这200个数中既不是2的倍数,又不是3的倍数,也不是5的倍数的自然数共有多少个? 解:如图先画出Venn图,不难看出不符合条件 的数共有(200÷2)+(200÷3)+(200÷5) -(200÷10)-(200÷6)-(200÷15) +(200÷30)=146 所以,符合条件的数共有200-146=54(个) 点评:分析200个数分为两类,即满足题设条件的和不满足题设条件的两大类,而不满足条件的这一类标准明确而简单,可考虑用扣除法。 题型7:集合综合题 例11.设集合A={x||x-a|<2},B={x|<1},若AB,求实数a的取值范围。 解:由|x-a|<2,得a-2查看更多