【数学】2020年高考真题——全国III卷(文)(精校版)
2020年普通高等学校招生全国统一考试
文科数学
注意事项:
1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上.
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.
3.考试结束后,将本试卷和答题卡一并交回.
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合,,则A∩B中元素的个数为( )
A.2 B.3 C.4 D.5
2.若,则z=( )
A.1–i B.1+i C.–i D.i
3.设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
4.Logistic模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I()=0.95K时,标志着已初步遏制疫情,则约为(ln19≈3)( )
A.60 B.63 C.66 D.69
5.已知,则( )
A. B. C. D.
6.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为( )
A.圆 B.椭圆 C.抛物线 D.直线
7.设O为坐标原点,直线x=2与抛物线C:交于D,E两点,若OD⊥OE,则C的焦点坐标为( )
A.(,0) B.(,0) C.(1,0) D.(2,0)
8.点到直线距离的最大值为( )
A.1 B. C. D.2
9.如图为某几何体的三视图,则该几何体的表面积是( )
A.6+4 B.4+4 C.6+2 D.4+2
10.设a=log32,b=log53,c=,则( )
A.a
0,b>0)的一条渐近线为y=x,则C的离心率为_________.
15.设函数.若,则a=_________.
16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
设等比数列{an}满足,.
(1)求{an}的通项公式;
(2)记为数列{log3an}的前n项和.若,求m.
18.(12分)
某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次
空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400
人次>400
空气质量好
空气质量不好
附:,
P(K2≥k)
0.050 0.010 0.001
k
3.841 6.635 10.828
19.(12分)
如图,在长方体中,点,分别在棱,上,且,.证明:
(1)当时,;
(2)点在平面内.
20.(12分)
已知函数.
(1)讨论的单调性;
(2)若有三个零点,求的取值范围.
21.(12分)
已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修4-4:坐标系与参数方程] (10分)
在直角坐标系xOy中,曲线C的参数方程为 (t为参数且t≠1),C与坐标轴交于A,B两点.
(1)求;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求直线AB的极坐标方程.
23.[选修4-5:不等式选讲] (10分)
设a,b,cR, a+b+c=0,abc=1.
(1)证明:ab+bc+ca<0;
(2)用max{a,b,c}表示a,b,c中的最大值,证明:max{a,b,c}≥.
参考答案
选择题答案
一、选择题
1.B 2.D 3.C 4.C
5.B 6.A 7.B 8.B
9.C 10.A 11.C 12.D
非选择题答案
二、填空题
13.7 14. 15.1 16.
三、解答题
17.解:(1)设的公比为,则.由已知得
,
解得.
所以的通项公式为.
(2)由(1)知 故
由得,即.
解得(舍去),.
18.解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:
空气质量等级
1
2
3
4
概率的估计值
0.43
0.27
0.21
0.09
(2)一天中到该公园锻炼的平均人次的估计值为
.
(3)根据所给数据,可得列联表:
人次≤400
人次>400
空气质量好
33
37
空气质量不好
22
8
根据列联表得
.
由于,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
19.解:(1)如图,连结,.因为,所以四边形为正方形,故.
又因为平面,于是.所以平面.
由于平面,所以.
(2)如图,在棱上取点,使得,连结,,,
因为,,,所以,于是四边形为平行四边形,故.
因为,,,所以,,四边形为平行四边形,故.
于是.所以四点共面,即点在平面内.
20.解:(1).
当k=0时,,故在单调递增;
当k<0时,,故在单调递增.
当k>0时,令,得.当时,;当时,;当时,.故在,单调递增,在单调递减.
(2)由(1)知,当时,在单调递增,不可能有三个零点.
当k>0时,为的极大值点,为的极小值点.
此时,且,,.
根据的单调性,当且仅当,即时,有三个零点,解得.因此k的取值范围为.
21.解:(1)由题设可得,得,
所以的方程为.
(2)设,根据对称性可设,由题意知,
由已知可得,直线BP的方程为,所以,,
因为,所以,将代入的方程,解得或.
由直线BP的方程得或8.
所以点的坐标分别为.
,直线的方程为,点到直线的距离为,故的面积为.
,直线的方程为,点到直线的距离为,故的面积为.
综上,的面积为.
22.[选修4—4:坐标系与参数方程]
解:(1)因为t≠1,由得,所以C与y轴的交点为(0,12);
由得t=2,所以C与x轴的交点为.
故.
(2)由(1)可知,直线AB的直角坐标方程为,将代入,
得直线AB的极坐标方程.
23.[选修4—5:不等式选讲]
解:(1)由题设可知,a,b,c均不为零,所以
.
(2)不妨设max{a,b,c}=a,因为,所以a>0,b<0,c<0.由,可得,故,所以.