- 2021-04-15 发布 |
- 37.5 KB |
- 9页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
2018-2019学年江西省奉新县第一中学高二下学期第二次月考数学(理)试题 Word版
江西省奉新县第一中学2018-2019学年高二下学期第二次月考理科数学试卷 命题人:宋 胜 2019.5 一.选择题(本大题共12小题,每小题5分,共60分) 1.已知i为虚数单位,复数z满足,则复数z的虚部为( ) A. B. C. D. 2.已知复数满足,则( ) A.0 B.1 C. D.2 3.投掷红、蓝两个骰子,事件A=“红骰子出现4点”,事件B=“蓝骰子出现的点数是偶数”,则P(A|B)=( ) A. B. C. D. 4.在曲线的所有切线中,斜率最小的切线方程为( ) A. B. C. D. 5.已知展开式中的系数为0,则正实数( ) A.1 B. C. D.2 6.由曲线,直线及y轴所围成的平面图形的面积为( ) A. B. 4 C. D. 6 7.在的展开式中含有常数项,则正整数n的最小值是 ( ) A.4 B.5 C. 6 D.7 8.根据党中央关于“精准”脱贫的要求,我市某农业经济部门决定派出五位相关专家对三个贫困地区进行调研,每个地区至少派遣一位专家,其中甲、乙两位专家需要派遣至同一地区,则不同的派遣方案种数为( ) A.18 B.24 C.28 D.36 9.甲、乙、丙3人从1楼乘电梯去商场的3到9楼,每层楼最多下2人,则下电梯的方法有( ) A.210种 B.84种 C.343种 D.336种 10.若函数在(1,2)上有最大值无最小值,则实数a的范围为 ( ) A. B. C. D. 11.用4种不同的颜色为一个固定位置的正方体的六个面着色,要求相邻两个面颜色不相同,则不同的着色方法数是( ) A.24 B.48 C.72 D.96 12.已知函数,若有且仅有一个整数使得,则实数m的取值范围为( ) A. B. C. D. 二、填空题(本大题共4小题,每小题5分,共20分) 13. 在某项测量中,测量结果ξ服从正态分布N(1,σ2)(σ>0).若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为________. 14. 3名男生和3名女生站成一排,任何2名男生都不相邻,任何2名女生也不相邻,共有________种不同排法。 15. ________. 16.已知函数在区间内任取两个实数,且,不等式恒成立,则实数的取值范围为 . 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)已知在平面直角坐标系xOy中,椭圆C的方程为,以O为极点,x轴的非负半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为. (1)求直线的直角坐标方程; (2)设M(x,y)为椭圆C上任意一点,求|x+y﹣1|的最大值. 18.(本小题满分12分)平面直角坐标系中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为. (Ⅰ)写出直线的普通方程与曲线C的直角坐标方程; (Ⅱ)已知与直线平行的直线过点,且与曲线C交于A,B两点,试求. 19.(本小题满分12分)一个口袋中装有n个红球且和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖. (1)用n表示一次摸奖中奖的概率; (2)若,设三次摸奖(每次摸奖后球放回)恰好有X次中奖,求X的数学期望EX; (3)设三次摸奖(每次摸奖后球放回)恰好有一次中奖的概率P,当n取何值时,P最大? 20.(本小题满分12分)2011年,国际数学协会正式宣布,将每年的3月14日设为“国际数学节”,其来源是中国古代数学家祖冲之的圆周率,为庆祝该节日,某校举办的“数学嘉年华”活动中,设计了如下的有奖闯关游戏:参赛选手按第一关、第二关、第三关的顺序依次闯关,若闯关成功,则分别获得5个、10个、20个学豆的奖励.游戏还规定:当选手闯过一关后,可以选择带走相应的学豆,结束游戏;也可以选择继续闯下一关,若有任何一关没有闯关成功,则全部学豆归零,游戏结束.设选手甲能闯过第一关、第二关、第三关的概率分别为,选手选择继续闯关的概率均为,且各关之间闯关成功与否互不影响. (1)求选手甲第一关闯关成功且所得学豆为零的概率; (2)设该选手所得学豆总数为X,求X的分布列及数学期望. 21.(本小题满分12分)大型综艺节目《最强大脑》中,有一个游戏叫做盲拧魔方,就是玩家先观察魔方状态并进行记忆,记住后蒙住眼睛快速还原魔方,盲 拧在外人看来很神奇,其实原理是十分简单的,要学会盲拧也是很容易的.根据调查显示,是否喜欢盲拧魔方与性别有关.为了验证这个结论,某兴趣小组随机抽取了50名魔方爱好者进行调查,得到的情况如下表所示: 喜欢盲拧 不喜欢盲拧 总计 男 22 ▲ 30 女 ▲ 12 ▲ 总计 ▲ ▲ 50 表1 并邀请这30名男生参加盲拧三阶魔方比赛,其完成情况如下表所示: 成功完成时间(分钟) [0,10) [10,20) [20,30) [30,40] 人数 10 10 5 5 表2 (1)将表1补充完整,并判断能否在犯错误的概率不超过0.025的前提下认为是否喜欢盲拧与性别有关? (2)根据表2中的数据,求这30名男生成功完成盲拧的平均时间(同一组中的数据用该组区间的中点值代替); (3)现从表2中成功完成时间在[0,10)内的10名男生中任意抽取3人对他们的盲拧情况进行视频记录,记成功完成时间在[0,10)内的甲、乙、丙3人中被抽到的人数为X,求X的分布列及数学期望E(X). 附参考公式及数据:,其中. 0.10 0.05 0.025 0.010 0.005 0.001 2.706 3.841 5.024 6.635 7.879 10.828 22.(本小题满分12分)已知函数(). (Ⅰ)求函数的单调区间; (Ⅱ)若函数存在两个极值点,求的取值范围. 高二下学期第二次月考理科数学试卷参考答案 D C C C B A B D D C D A 13.0.8 14. 72 15. 16. 17.解:(1)根据题意,椭圆C的方程为+=1, 则其参数方程为,(α为参数);………..1分 直线l的极坐标方程为ρsin(θ+)=3,变形可得ρsinθcos+ρcosθsin=3, 即ρsinθ+ρcosθ=3,………..3分,将x=ρcosθ,y=ρsinθ代入可得x+y﹣6=0, 即直线l的普通方程为x+y﹣6=0;………..5分 (2)根据题意,M(x,y)为椭圆一点,则设M(2cosθ,4sinθ),………..6分 |2x+y﹣1|=|4cosθ+4sinθ﹣1|=|8sin(θ+)﹣1|,………..8分 分析可得,当sin(θ+)=﹣1时,|2x+y﹣1|取得最大值9.………….10分 18.解:(Ⅰ)把直线的参数方程化为普通方程为,即 由,可得, ∴曲线的直角坐标方程为.………………4分 (Ⅱ)直线的倾斜角为,∴直线的倾斜角也为, 又直线过点, ∴直线的参数方程为(为参数),………………7分 将其代入曲线的直角坐标方程可得, 设点,对应的参数分别为,. 由一元二次方程的根与系数的关系知,.………………10分 ∴.………………12分 19.(1)由题设知:…………………………………………3分 (2)由(1)及题设知: ∴ ………6分 (3)由(1)及题设知: ∴ 即当时,,其为单增区间;当时,,其为单减区间. ∴当,即,得时,最大. …………………………12分 20 21.解:(1)依题意,补充完整的表1如下: 喜欢盲拧 不喜欢盲拧 总计 男 22 8 30 女 8 12 20 总计 30 20 50 ………………(2分) 由表中数据计算得的观测值为 所以能在犯错误的概率不超过的前提下认为是否喜欢盲拧与性别有关。…(4分) (2)依题意,所求平均时间为(分钟) …(6分) (3)依题意,X的可能取值为0,1,2,3,故 ………………(10分) 故X的分布列为 X 0 1 2 3 P 故 ………………(12分) 22.查看更多