- 2021-04-15 发布 |
- 37.5 KB |
- 20页
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/17f44303b88b55db4df6f3728661ed21/img/1.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/17f44303b88b55db4df6f3728661ed21/img/2.jpg)
![](http://data.wuyouwenku.com/file-convert/2020/10/19/13/56/17f44303b88b55db4df6f3728661ed21/img/3.jpg)
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
数学文卷·2018届天津市第一中学高三上学期第二次月考试题(解析版)
天津市第一中学2017—2018学年度高三年级二月考试卷 数 学(文史类) 第Ⅰ卷(共60分) 一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合,则( ) A. {0,1,2} B. {1,2} C. {0} D. {0,1} 【答案】D 【解析】集合A={0,1,2},B={x|x2﹣5x+4<0}={x|1<x<4}, 故选:B. 点睛:本题考查集合的运算,主要是交集、补集的求法,考查真子集的求法,属于基础题. 2. 是的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分又不必要条件 【答案】A 【解析】因为,所以,两边同乘以得:,当时,可得,推不出,综上是的充分不必要条件,故选A. 3. 执行如图所示的程序框图,若输入的值为 2,则输出的值为( ) A. 3 B. 4 C. 5 D. 6 【答案】C 【解析】模拟执行程序,可得 A=2,S=0,n=1 不满足条件S>2,执行循环体,S=1,n=2 不满足条件S>2,执行循环体,S=32,n=3 不满足条件S>2,执行循环体,S=116,n=4 不满足条件S>2,执行循环体,S=2512,n=5 满足条件S>2,退出循环,输出n的值为5. 故选:C 点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括顺序结构、条件结构、循环结构,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项. 4. 设为空间两条不同的直线,为空间两个不同的平面,给出下列命题: ①若,则; ②若,则; ③若,则; ④若,则. 其中所有正确命题的序号是( ) A. ②④ B. ③④ C. ①② D. ①③ 【答案】B 【解析】对于①,若m∥α,m∥β,则α与β可能相交;故①错误; 对于②,若m∥α,m∥n则n可能在α内;故②错误; 对于③,若m⊥α,m∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β;故③正确; 对于④,若m⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m⊥β;故④正确;故选B. 点睛:本题考查了空间线面平行、线面垂直面面垂直的性质定理和判定定理的运用;熟练掌握定理是关键. 5. 已知奇函数在上是增函数,.若,,则的大小关系为( ) A. B. C. D. 【答案】C 【解析】因为是奇函数且在上是增函数,所以在时,, 从而是上的偶函数,且在上是增函数, , ,又,则,所以即, , 所以,故选C. 【考点】 指数、对数、函数的单调性 【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式. 6. 已知函数当时,,则的取值范围是( ) A. B. C. D. 【答案】A 【解析】∵当x1≠x2时,<0,∴f(x)是R上的单调减函数, ∵f(x)=,∴, ∴0<a≤,故选:A. 7. 设函数,若在区间上单调,且,则的最小正周期为( ) A. B. C. D. 【答案】D 【解析】∵函数f(x)=sin(ωx+φ),A>0,ω>0,若f(x)在区间[,]上单调, ∴﹣≤==,即≤,∴0<ω≤3. ∵f()=f()=﹣f(),∴x==,为f(x)=sin(ωx+φ)的一条对称轴, 且(,0)即(,0)为f(x)=sin(ωx+φ)的一个对称中心, ∴=•=﹣=,解得ω=2∈(0,3],∴T==π,故选:D. 点睛:本题考查三角函数的周期性及其求法,确定x=与(,0)为同一周期里面相邻的对称轴与对称中心是关键,也是难点,属于难题. 8. 已知均为正数,且,则的最小值为( ) A. 6 B. 7 C. 8 D. 9 【答案】B 【解析】∵a,b均为正数,且ab﹣a﹣2b=0,∴=1. 则=+b2﹣1. ∴(+b2)(1+1)≥≥16,当且仅当a=4,b=2时取等号. ∴+b2≥8, ∴=+b2﹣1≥7.故选B. 点睛:本题考查“乘1法”、基本不等式的性质、柯西不等式,考查了推理能力与计算能力,属于中档题. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 9. 已知是实数,是纯虚数,则 ___________. 【答案】 【解析】设=bi(b≠0),则a﹣i=(2+i)•bi=﹣b+2bi,∴,解得a=. 故填:. 10. 曲线在点处的切线与两坐标轴围成的三角形的面积是__________. 【答案】 【解析】, ∴在点P(1,0)处的切线斜率为k=1, ∴在点P(1,0)处的切线l为y﹣0=x﹣1,即y=x﹣1, ∵y=x﹣1与坐标轴交于(0,﹣1),(1,0). ∴切线y=x﹣1与坐标轴围成的三角形面积为S=×1×1=.故答案为:. 点睛:本题考查了导数的运用:求切线的方程,考查导数的几何意义,以及三角形的面积计算,属于基础题. 11. 如图是一个几何体的三视图,则该几何体的体积为_________. 【答案】 【解析】根据三视图知几何体是组合体,中间是长宽高分别为1,2,2的长方体、两边是两个半圆锥,半径为1,高为2, ∴该几何体的体积V=1×2×2+π•12•2=4+,故答案为4+. 点睛:本题考查由三视图求几何体的体积,以及几何体的体积公式,考查空间想象能力,三视图正确复原几何体是解题的关键. 12. 圆心在直线,且与直线相切于点的圆的标准方程为__________. 【答案】 【解析】∵圆心在直线y=﹣4x上, 设圆心C为(a,﹣4a),圆与直线x+y﹣1=0相切于点P(3,﹣2), 则kPC==1,∴a=1.即圆心为(1,﹣4). r=|CP|==2,∴圆的标准方程为(x﹣1)2+(y+4)=8. 故答案为:(x﹣1)2+(y+4)=8. 点睛:此题考查了直线与圆的位置关系,涉及的知识有:点到直线的距离公式,圆的标准方程,以及直线的点斜式方程,当直线与圆相切时,圆心到切线的距离等于圆的半径.属于基础题. 13. 在中,已知,若点满足,且,则实数的值为__________. 【答案】1或 【解析】中,,点满足,∴, ∴,又,整理得,解得或,故答案为 或. 14. 已知函数若函数有三个零点,则实数的取值范围为__________. 【答案】 【解析】函数,若函数有三个零点, 就是与有3个交点, ,画出两个函数的图象如图: , 当x<0时,,当且仅当x=−1时取等号,此时−b>6,可得b<−6; 当时,当时取得最大值,满足条件的. 综上,. 给答案为:. 点睛:已知函数有零点求参数常用的方法和思路: (1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成函数的值域问题解决; (3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数的图像,然后数形结合求解. 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 15. 在中,角所对的边分别为,且,已知,,. (I)求和的值 (II)求的值 【答案】(1) (2) 【解析】试题分析:(1)由向量的数量积运算及三角形余弦定理可求得a,c的关系式,解方程可求得其值;由正弦定理可求得角B,C的正余弦值,代入公式可求得的值 试题解析:(1)由,得:,又,所以. 由余弦定理,得.又,所以. 解,得或.因为,∴. (2)在中,. 由正弦定理,得,又因为,所以为锐角, 因此. 于是. 考点:正余弦定理解三角形及三角函数基本公式 16. 某公司计划在甲、乙两个电视台做总时间不超过 300 分钟的广告,广告总费用不超过9万元.甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟.甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.设该公司在甲、乙两个电视台做广告的时间分别为分钟和分钟. (Ⅰ)用列出满足条件的数学关系式,并画出相应的平面区域; (Ⅱ)该公司如何分配在甲、乙两个电视台做广告的时间使公司的收益最大,并求出最大收益是多少? 【答案】(1)详见解析(2) 该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告使公司的收益最大,最大收益是70万元. 【解析】试题分析:(I)根据广告费用和收益列出约束条件,作出可行域; (II)列出目标函数z=3000x+2000y,根据可行域判断最优解的位置,列方程组解出最优解得出最大收益. 试题解析:(I)设该公司在甲、乙两个电视台做广告的时间分别为分钟和分钟,则,满足的数学关系式为 该二次元不等式组等价于 做出二元一次不等式组所表示的平面区域 (II)设公司的收益为元,则目标函数为: 考虑,将它变形为. 这是斜率为,随变化的一族平行直线,当截距最大,即最大. 又因为满足约束条件,所以由图可知, 当直线经过可行域上的点时,截距最大,即最大. 解方程组得, 代入目标函数得. 答:该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告使公司的收益最大,最大收益是70万元. 17. 如图,边长为的正方形与梯形所在的平面互相垂直,其中 的中点. (Ⅰ)证明:平面 (Ⅱ)求二面角的正切值 (Ⅲ)求与平面所成角的余弦值 【答案】(1) (2) 【解析】试题分析:(Ⅰ)推导出OM∥AC,由此能证明OM||平面ABCD. (Ⅱ)取AB中点H,连接DH,则∠EHD为二面角D﹣AB﹣E的平面角,由此能求出二面角D﹣AB﹣E的正切值. (Ⅲ)推导出BD⊥DA,从而BD⊥平面ADEF,由此得到∠BFD的余弦值即为所求. 试题解析: (I)分别为的中点 平面 平面 平面 (II)取中点,连接 , 又 为二面角的平面角 又 ∵平面平面,平面平面平面 平面 的余弦值即为所求 在中, 与平面所成角的余弦值为 点睛:本题考查线面平行的证明,考查二面角的正切值的求法,考查线面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养. 18. 已知数列的前项和为, (Ⅰ)求数列的通项公式 (II)设,为的前项和,求 【答案】(1)详见解析(2) 【解析】试题分析:(1)利用递推关系与等比数列的通项公式即可得出; (2)当n为奇数时,bn==;当n为偶数时,bn==. 分别利用“裂项求和”、“错位相减法”即可得出. 试题解析:(1) 又 ∴数列是以2为首项,公比为2的等比数列 由(1)知 所以 设, 则, 两式相减得, 整理得,所以. 点睛:本题考查了递推关系、等比数列的通项公式前n项和公式、“裂项求和”方法、“错位相减法”,考查了推理能力与计算能力,属于中档题. 19. 已知数列中, (I)求证:数列是等比数列 (II)求数列的通项公式 (III)设,若,使成立,求实数的取值范围. 【答案】(1)详见解析(2)(3) 【解析】试题分析:(I)由,变形为利用等比数列的定义即可证明. (II)由(I)可得:,利用“累加求和”方法、等比数列的求和公式即可得出. (III),可得.利用“裂项求和”方法可得Sn,再利用数列的单调性、不等式的解法即可得出. 试题解析: (I)证明:, . ,,. ∴数列是首项、公比均为2的等比数列 (II)解:是等比数列,首项为2,通项, 故 ,当时,符合上式, ∴数列的通项公式为 (III)解:, 故 若,使成立,由已知,有,解得,所以的取值范围为 点睛:本题考查了递推关系、等比数列的定义及其通项公式、“裂项求和”方法、“累加求和”方法、数列的单调性、不等式的解法,考查了推理能力与计算能力,属于难题. 20. 已知函数,其中为自然对数的底数, (I)若,函数 ①求函数的单调区间 ②若函数的值域为,求实数的取值范围 (II)若存在实数,使得,且,求证: 【答案】(1)①详见解析②实数的取值范围是;(2); 【解析】试题分析:(1)①求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可; ②求出函数的导数,通过讨论m的范围得到函数的值域,从而确定m的具体范围即可; (2)求出函数f(x)的导数,得到a>0且f(x)在(﹣∞,]递减,在[,+∞)递增,设,则有 ,根据函数的单调性得到关于m的不等式组,解出即可. 试题解析: (1)当时,. ①. 由得,由得. 所以函数的单调增区间为,单调减区间为. ② 当时,,所以在区间上单调递减; 当时,,所以在区间上单调递增. 在上单调递减,值域为, 因为的值域为,所以, 即. 由①可知当时,,故不成立. 因为在上单调递减,在上单调递增,且 所以当时,恒成立,因此. 当时,在上单调递减,在上单调递增, 所以函数在上的值域为,即. 在上单调递减,值域为. 因为的值域为,所以,即. 综合1°,2°可知,实数的取值范围是. (2). 若时,,此时在上单调递增. 由可得,与相矛盾, 同样不能有. 不妨设,则有. 因为在上单调递减,在上单调递增,且, 所以当时,. 由,且,可得 故. 又在单调递减,且,所以, 所以,同理. 即解得, 所以. 点睛:本题考查函数的单调性极值及恒成立问题,涉及函数不等式的证明,综合性强,难度大,属于难题.处理导数大题时,注意分层得分的原则,力争第一二问答对,第三问争取能写点,一般涉及求函数单调性及极值时,比较容易入手,求导后注意分类讨论,对于恒成立问题一般要分离参数,然后利用函数导数求函数的最大值或最小值,对于含有不等式的函数问题,一般要构造函数,利用函数的单调性来解决,但涉及技巧比较多,需要多加体会. 查看更多