圆综合题中考真题分类汇编

申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。

文档介绍

圆综合题中考真题分类汇编

中考圆综合题分类汇编 ‎【第一类 切线证明、边角计算】‎ ‎1、如图, AE是⊙O直径,D是⊙O上一点,连结AD并延长使AD=DC,连结CE交⊙O于点B,连结AB.过点E的直线与AC的延长线交于点F,且∠F=∠CED.‎ ‎(1)求证:EF是⊙O切线;‎ ‎(2)若CD=CF=2,求BE的长.‎ ‎2、如图,AB经过⊙O上的点C,且OA=OB,CA=CB,⊙O分别与OA、OB的交点D、E恰好是OA、OB的中点,EF切⊙O于点E,交AB于点F. ‎ ‎(1)求证:AB是⊙O的切线;‎ ‎(2)若∠A=30°,⊙O的半径为2,求DF的长.‎ E B C O F D A ‎3、如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.‎ ‎(1)求证:∠E=∠C;‎ ‎(2)当⊙O的半径为3,cosA=时,求EF的长.‎ ‎ 4、如图,已知A、B、C分别是⊙O上的点,∠B=60°,P是直径CD的延长线上的一点,且AP=AC.‎ ‎(1)求证:AP与⊙O相切;‎ ‎(2)如果AC=3,求PD的长.‎ ‎5、已知:如图, AB是⊙O的直径,AM和BN是⊙O的两条切线,点D是AM上一点,联结OD , 作BE∥OD交⊙O于点E, 联结DE并延长交BN于点C.‎ ‎(1)求证:DC是⊙O的切线;‎ ‎(2)若AD=l,BC=4,求直径AB的长。 ‎ ‎6、如图,AB是⊙O的直径,点E是上一点,∠DAC=∠AED.‎ ‎(1)求证:AC是⊙O的切线;‎ ‎(2) 若点E是的中点,连结AE交BC于点F,当BD=5, CD=4时,求DF的值.‎ ‎7、如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE.‎ ‎(1)求证:DE与⊙O 相切.‎ ‎(2)若tanC=,DE=2,求AD的长.‎ ‎8、 如图,在Rt△ABC中,∠ACB=90°,点D是边AB上一点,以BD为直径的⊙O与边AC相切于点E,连结DE并延长交BC的延长线于点F.‎ ‎(1)求证:∠BDF=∠F;‎ ‎(2)如果CF=1,sinA=,求⊙O的半径.‎ ‎9、 已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以CD为直径作⊙O,交边AC于点P,连接BP,交AD于点E.‎ ‎(1)求证:AD是⊙O的切线;‎ ‎(2)如果PB是⊙O的切线,BC=4,求PE的长.‎ ‎10、如图,在中,,以为直径作圆,交于点 ‎,连结,过点作圆的切线,交延长线于点,交于点.‎ ‎(1)求证:;‎ ‎(2)当,时,求及的长.‎ ‎11、如图,在中,,点是边上一点,以为直径的⊙与边相切于点,连接并延长交的延长线于点.‎ ‎(1)求证:;‎ ‎(2)若,,求⊙的半径.‎ ‎12、如图,CA、CB为⊙O的切线,切点分别为A、B.直径延长AD与CB的延长线交于点E. AB、CO交于点M,连接OB.‎ ‎(1)求证:∠ABO=∠ACB;‎ ‎(2)若sin∠EAB=,CB=12,求⊙O 的半径及的值.‎ ‎13、如图,⊙是△的外接圆,,连结并延长交⊙的切线于点.‎ ‎ (1)求证:;‎ ‎(2)若,,求的长.‎ ‎14、如图,在△ABC中,AB=AC,以AB为直径的⊙O与边BC、AC分别交于D、E两点, DFAC于F.‎ ‎(1)求证:DF为⊙O的切线;‎ ‎(2)若,CF=9,求AE的长.‎ ‎15、(2014•无锡)如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD∥BC,OD与AC交于点E.‎ ‎(1)若∠B=70°,求∠CAD的度数;‎ ‎(2)若AB=4,AC=3,求DE的长.‎ ‎16、(2014•福州)如图,在△ABC中,∠B=45°,∠ACB=60°,AB=3,点D为BA延长线上的一点,且∠D=∠ACB,⊙O为△ACD的外接圆.‎ ‎(1)求BC的长;‎ ‎(2)求⊙O的半径.‎ ‎17、(2014•黄冈)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.‎ ‎(1)求证:EB=EC;‎ ‎(2)若以点O、D、E、C为顶点的四边形是正方形,试判断△ABC的形状,并说明理由.‎ ‎18、(2014•三明)已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA.‎ ‎(1)当直线CD与半圆O相切时(如图①),求∠ODC的度数;‎ ‎(2)当直线CD与半圆O相交时(如图②),设另一交点为E,连接AE,若AE∥OC,‎ ‎①AE与OD的大小有什么关系?为什么?②求∠ODC的度数.‎ ‎19、(2014•白银)如图,Rt△ABC中,∠ABC=90°,以AB为直径作半圆⊙O交AC与点D,点E为BC的中点,连接DE.‎ ‎(1)求证:DE是半圆⊙O的切线.‎ ‎(2)若∠BAC=30°,DE=2,求AD的长.‎ ‎【第二类 圆与相似的综合】‎ ‎20、(2014•乐山)如图,⊙O1与⊙O2外切与点D,直线l与两圆分别相切于点A、B,与直线O1、O2相交于点M,且tan∠AM01=,MD=4.‎ ‎(1)求⊙O2的半径;‎ ‎(2)求△ADB内切圆的面积;‎ ‎(3)在直线l上是否存在点P,使△MO2P相似于△MDB?若存在,求出PO2的长;若不存在,请说明理由.‎ ‎21、(2014•泸州)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE•CA.‎ ‎(1)求证:BC=CD;‎ ‎(2)分别延长AB,DC交于点P,过点A作AF⊥CD交CD的延长线于点F,若PB=OB,CD=,求DF的长.‎ ‎22、(2014.绵阳市)如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且满足=,过点C作⊙O的切线交AB的延长线于D点,交AF的延长线于E点.‎ ‎(1)求证:AE⊥DE;‎ ‎(2)若tan∠CBA=,AE=3,求AF的长.‎ ‎23、(2014年南充)如图,已知AB是⊙O的直径,BP是⊙O的弦,弦CD⊥AB于点F,交BP于点G,E在CD的延长线上,EP=EG,‎ ‎(1)求证:直线EP为⊙O的切线;‎ ‎(2)点P在劣弧AC上运动,其他条件不变,若BG2=BF•BO.试证明BG=PG;‎ ‎(3)在满足(2)的条件下,已知⊙O的半径为3,sinB=.求弦CD的长.‎ ‎24、(2014•攀枝花)如图,以点P(﹣1,0)为圆心的圆,交x轴于B、C两点(B在C的左侧),交y轴于A、D两点(A在D的下方),AD=2,将△ABC绕点P旋转180°,得到△MCB.‎ ‎(1)求B、C两点的坐标;‎ ‎(2)请在图中画出线段MB、MC,并判断四边形ACMB的形状(不必证明),求出点M的坐标;‎ ‎(3)动直线l从与BM重合的位置开始绕点B顺时针旋转,到与BC重合时停止,设直线l与CM交点为E,点Q为BE的中点,过点E作EG⊥BC于G,连接MQ、QG.请问在旋转过程中∠MQG的大小是否变化?若不变,求出∠MQG的度数;若变化,请说明理由.‎ ‎25、 (2014年四川资阳)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.‎ ‎(1)求证:△CDE∽△CAD;‎ ‎(2)若AB=2,AC=2,求AE的长.‎ 26、 ‎(2014•广安)如图,AB为⊙O的直径,以AB为直角边作Rt△ABC,∠CAB=90°,斜边BC与⊙O交于D,过点D作⊙O的切线DE交AC于点E,DG⊥AB于点F,交⊙O于点G.‎ 27、 ‎(1)求证:E是AC的中点;(2)若AE=3,cos∠ACB=,求弦DG的长.‎ ‎28、(2014.成都)如图,在⊙的内接△ABC中,∠ACB=90°,AC=2BC,过C作AB的垂线交⊙O于另一点D,垂足为E.设P是上异于A,C的一个动点,射线AP交于点F,连接PC与PD,PD交AB于点G.‎ ‎(1)求证:△PAC∽△PDF;‎ ‎(2)若AB=5,=,求PD的长;‎ ‎(3)在点P运动过程中,设,,求与之间的函数关系式.(不要求写出的取值范围)‎ ‎29、(2014福建省莆田市)如图,AB是⊙O的直径,C是⊙O上的一点,过点A作AD⊥CD于点D,交⊙O于点E,且.‎ ‎ (1)求证:CD是⊙O的切线;‎ ‎ (2)若tan∠CAB=,BC=3,求DE的长.‎ ‎ ‎‎(第10题图)‎ E D O C B A ‎30、(2014.厦门)已知A,B,C,D是⊙O上的四个点。‎ (1) 如图7,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;‎ (1) 如图8,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径。‎ A D B C O E 图8‎ A B O C D 图7‎ ‎31、(2014•天水)如图,⊙M过坐标原点O,分别交两坐标轴于A(1,O),B(0,2)两点,直线CD交x轴于点C(6,0),交y轴于点D(0,3),过点O作直线OF,分别交⊙M于点E,交直线CD于点F.‎ ‎(1)∠CDO=∠BAO;‎ ‎(2)求证:OE•OF=OA•OC;‎ ‎(3)若OE=,试求点F的坐标.‎ ‎32、(2014年广东汕尾)如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于E.‎ ‎(1)求证:点E是边BC的中点;‎ ‎(2)求证:BC2=BD•BA;‎ ‎(3)当以点O、D、E、C为顶点的四边形是正方形时,求证:△ABC是等腰直角三角形.‎ ‎33、(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.‎ ‎(1)求⊙M的半径;‎ ‎(2)证明:BD为⊙M的切线;‎ ‎(3)在直线MC上找一点P,使|DP﹣AP|最大.‎ ‎34、(2014.广东)如图,⊙是△ABC的外接圆,AC是直径,过点O作线段OD⊥AB于点D,延长DO交⊙于点P,过点P作PE⊥AC于点E,作射线DE交BC的延长线于点F,连接PF。‎ ‎(1)若∠POC=60°,AC=12,求劣弧PC的长;(结果保留π)‎ ‎(2)求证:OD=OE;‎ ‎(3)求证:PF是⊙的切线。‎ ‎35、(2014广西省桂林市)如图,△ABC的内接三角形,P为BC延长线上一点,∠PAC=∠B,AD为⊙O的直径,过C作CG⊥AD于E,交AB于F,交⊙O于G。‎ ‎(1)判断直线PA与⊙O的位置关系,并说明理由;‎ ‎(2)求证:AG2=AF·AB;‎ ‎(3)求若⊙O的直径为10,AC=2,AB=4,‎ 求△AFG的面积。‎ ‎36、(2014•玉林)如图的⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,过点D、A分别作⊙O的切线交于点G,并与AB延长线交于点E.‎ ‎(1)求证:∠1=∠2.‎ ‎(2)已知:OF:OB=1:3,⊙O的半径为3,求AG的长.‎ ‎37、 (2014年贵州安顺)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.‎ ‎(1)求证:PC是⊙O的切线;‎ ‎(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;‎ ‎(3)在满足(2)的条件下,AB=10,ED=4,求BG的长. ‎ ‎38、(2014•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.‎ ‎(1)求证:CF=DB;‎ ‎(2)当AD=时,试求E点到CF的距离. ‎ ‎39、(2014年黑龙江哈尔滨)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,连接CD,且AE=DE,BC=CE.‎ ‎(1)求∠ACB的度数;‎ ‎(2)过点O作OF⊥AC于点F,延长FO交BE于点G,DE=3,EG=2,求AB的长.‎ ‎40.(10分)(2014•包头)如图,已知AB,AC分别是⊙O的直径和弦,点G为上一点,GE⊥AB,垂足为点E,交AC于点D,过点C的切线与AB的延长线交于点F,与EG的延长线交于点P,连接AG.‎ ‎(1)求证:△PCD是等腰三角形;‎ ‎(2)若点D为AC的中点,且∠F=30°,BF=2,求△PCD的周长和AG的长.‎ ‎41.(10分)(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.‎ ‎(1)求证:PA是⊙O的切线;‎ ‎(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;‎ ‎(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.‎ ‎42.(11·包头)(12分)如图,已知∠ABC=90º,AB=BC,直线l与以BC为直径的⊙O相切于点C,点F是⊙O上异于B、C的动点,直线BF与l相交于点E,AF⊥FD交BC于点D.[来源:Zxxk.Com]‎ O D A B C E F l ‎(1)如果BE=15,CE=9,求EF的长.‎ ‎(2)证明:①△CDF∽△BAF;②CD=CE.‎ ‎(3)探求动点F在什么位置时,相应的点D位于线段BC的 延长线上,且使BC=CD,请说明你的理由.‎ ‎43.(本小题满分10分)(09)包头 如图,已知是的直径,点在上,过点的直线与的延长线交于点,,.‎ ‎(1)求证:是的切线;‎ ‎(2)求证:;‎ ‎(3)点是的中点,交于点,若,求的值.‎ O N B P C A M ‎44.(10分)(2010•包头)如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.‎ ‎(1)求证:PC是⊙O的切线;‎ ‎(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;‎ ‎(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.‎ ‎45、(2008•包头)如图,△ABC中,AD平分∠BAC交△ABC的外接圆⊙O于点H,过点H作EF∥BC交AC、AB的延长线于点E、F.‎ ‎(1)求证:EF是⊙O的切线;‎ ‎(2)若AH=8,DH=2,求CH的长;‎ ‎(3)若∠CAB=60°,在(2)的条件下,求的长.‎ ‎46.如图,△ABC中,以BC为直径的圆交AB于点D,∠ACD=∠ABC.‎ ‎(1)求证:CA是圆的切线;‎ ‎(2)若点E是BC上一点,已知BE=6,tan∠ABC=,tan∠AEC=,求圆的直径.‎ ‎2如图,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一点(不与点A、B重合),连接CO并延长CO交于⊙O于点D,连接AD.‎ ‎ (1)弦长AB等于 ▲ (结果保留根号);‎ ‎ (2)当∠D=20°时,求∠BOD的度数;‎ ‎ (3)当AC的长度为多少时,以A、C、D为顶点的三角形与以B、C、O为顶点的三角形相似?请写出解答过程.‎ ‎47. 如图右,已知直线PA交⊙0于A、B两点,AE是⊙0的直径.点C为⊙0上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。‎ ‎(1)求证:CD为⊙0的切线;‎ ‎(2)若DC+DA=6,⊙0的直径为l0,求AB的长度.‎ ‎48.‎ ‎49.(11金华)如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF 的两边相交于A、B和C、D,连结OA,此时有OA//PE.‎ ‎(1)求证:AP=AO;‎ ‎(2)若tan∠OPB=,求弦AB的长;‎ ‎(3)若以图中已标明的点(即P、A、B、C、D、O)构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 . ‎ ‎50.(芜湖市)如图,BD是⊙O的直径,OA⊥OB,M是劣弧上一点,过点M点作⊙O的切线MP交OA的延长线于P点,MD与OA交于N点.‎ ‎(1)求证:PM=PN;(2)若BD=4,PA= AO,过点B作BC∥MP交⊙O于C点,求BC的长.‎ ‎51.(黄冈市)(6分)如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD=AB·AE,‎ 求证:DE是⊙O的切线.‎ ‎52.(义乌市)如图,以线段为直径的⊙交线段于点,点是的中点,交于点,°,,.‎ ‎(1)求的度数;‎ ‎(2)求证:BC是⊙的切线;‎ ‎ (3)求的长度.‎ ‎53.如图12,已知:边长为1的圆内接正方形中,为边的中点,直线交圆于点.‎ ‎(1)求弦的长.‎ ‎(2)若是线段上一动点,当长为何值时,三角形与以为顶点的三角形相似.‎ ‎54.(本小题满分10分)如图,⊙O是Rt△ABC的外接圆,AB为直径,ABC=30°,CD是⊙O的切线,ED⊥AB于F,‎ ‎(1)判断△DCE的形状;(2)设⊙O的半径为1,且OF=,求证△DCE≌△OCB. ‎ ‎55(08湖北襄樊24题)‎ 如图,直线经过上的点,并且,,交直线于,连接.‎ ‎(1)求证:直线是的切线;‎ ‎(2)试猜想三者之间的等量关系,并加以证明;‎ ‎(3)若,的半径为3,求的长.‎ ‎56、 ⊙O的半径OD经过弦AB(不是直径)的中点C,过AB的延长线上一点P作⊙O的切线PE,E为切点,PE∥OD;延长直径AG交PE于点H;直线DG交OE于点F,交PE于点K.‎ ‎(1)求证:四边形OCPE是矩形;(2)求证:HK=HG; (3)若EF=2,FO=1,求KE的长.‎ ‎58、如图,在中,是的中点,以为直径的交 的三边,交点分别是点.的交点为,且,.‎ ‎(1)求证:.‎ ‎(2)求的直径的长.‎ ‎59.(12分)(2013•包头)已知抛物线y=x2﹣3x﹣的顶点为点D,并与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C.‎ ‎(1)求点A、B、C、D的坐标;‎ ‎(2)在y轴的正半轴上是否存在点P,使以点P、O、A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;‎ ‎(3)取点E(﹣,0)和点F(0,﹣),直线l经过E、F两点,点G是线段BD的中点.‎ ‎①点G是否在直线l上,请说明理由;‎ ‎②在抛物线上是否存在点M,使点M关于直线l的对称点在x轴上?若存在,求出点M的坐标;若不存在,请说明理由.‎ ‎60.(11·包头)(12分)如图,已知抛物线y=ax2+bx+c经过点A(2,3)、B(6,1)、C(0,-2).‎ ‎(1)求此抛物线的解析式,并用配方法把解析式化为顶点式.‎ ‎(2)点P是抛物线对称轴上的动点,当AP⊥CP时,求点P的坐标.‎ ‎(3)设直线BC与x轴交于点D,点H是抛物线与x轴的一个交点,点E(t,n)是抛物线上的动点,四边形OEDC的面积为S.当S取何值时,满足条件的E只有一个?当S取何值时,满足条件的E有两个?‎ ‎61.已知直线y = 2x + 4 与x 轴、y 轴分别交于A , D 两点,抛物线21‎ y=x+bx+c2‎ -经过点A , D ,点B 是抛物线与x 轴的另一个交点。 ‎ ‎(1)求这条抛物线的解析式及点B 的坐标; ‎ ‎(2)设点M 是直线AD 上一点,且AOMOMDS : S1 : 3D=,求点M 的坐标; ‎ ‎(3)如果点C(2,y)在这条抛物线上,在y 轴的正半轴上是否存在点P,使△BCP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。‎ ‎26.(本小题满分12分)‎ 已知二次函数()的图象经过点,,,直线()与轴交于点.‎ ‎(1)求二次函数的解析式;‎ ‎(2)在直线()上有一点(点在第四象限),使得为顶点的三角形与以为顶点的三角形相似,求点坐标(用含的代数式表示);‎ ‎(3)在(2)成立的条件下,抛物线上是否存在一点,使得四边形为平行四边形?若存在,请求出的值及四边形的面积;若不存在,请说明理由.‎
查看更多

相关文章

您可能关注的文档