- 2021-04-15 发布 |
- 37.5 KB |
- 14页
申明敬告: 本站不保证该用户上传的文档完整性,不预览、不比对内容而直接下载产生的反悔问题本站不予受理。
文档介绍
【数学】2018届一轮复习人教A版第十一章11-1随机事件的概率学案
1.概率和频率 (1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率. (2)对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A). 2.事件的关系与运算 定义 符号表示 包含关系 如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B) B⊇A (或A⊆B) 相等关系 若B⊇A且A⊇B A=B 并事件(和事件) 若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的并事件(或和事件) A∪B (或A+B) 交事件(积事件) 若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件) A∩B(或AB) 互斥事件 若A∩B为不可能事件(A∩B=∅),那么称事件A与事件B互斥 A∩B=∅ 对立事件 若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件 P(A)+P(B)=1 3.概率的几个基本性质 (1)概率的取值范围:0≤P(A)≤1. (2)必然事件的概率P(E)=1. (3)不可能事件的概率P(F)=0. (4)概率的加法公式 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). (5)对立事件的概率 若事件A与事件B互为对立事件,则P(A)=1-P(B). 【知识拓展】 互斥事件与对立事件的区别与联系 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件. 【思考辨析】 判断下列结论是否正确(请在括号中打“√”或“×”) (1)事件发生频率与概率是相同的.( × ) (2)随机事件和随机试验是一回事.( × ) (3)在大量重复试验中,概率是频率的稳定值.( √ ) (4)两个事件的和事件是指两个事件都得发生.( × ) (5)对立事件一定是互斥事件,互斥事件不一定是对立事件.( √ ) (6)两互斥事件的概率和为1.( × ) 1.从{1,2,3,4,5}中随机选取一个数a,从{1,2,3}中随机选取一个数b,则b>a的概率是________. 答案 解析 基本事件的个数有5×3=15,其中满足b>a的有3种,所以b>a的概率为=. 2.(教材改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是________.(填序号) ①必然事件 ②随机事件 ③不可能事件 ④无法确定 答案 ② 解析 抛掷10次硬币正面向上的次数可能为0~10,都有可能发生,正面向上5次是随机事件. 3.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175 cm的概率为________. 答案 0.3 解析 因为必然事件发生的概率是1,所以该同学的身高超过175 cm的概率为1-0.2-0.5=0.3. 4.给出下列三个命题,其中正确的命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品; ②做7次抛硬币的试验,结果3次出现正面,因此正面出现的概率是; ③随机事件发生的频率就是这个随机事件发生的概率. 答案 0 解析 ①错,不一定是10件次品;②错,是频率而非概率;③错,频率不等于概率,这是两个不同的概念. 5.(教材改编)袋中装有9个白球,2个红球,从中任取3个球,则①恰有1个红球和全是白球;②至少有1个红球和全是白球;③至少有1个红球和至少有2个白球;④至少有1个白球和至少有1个红球. 在上述事件中,是对立事件的为________. 答案 ② 解析 ①是互斥不对立的事件,②是对立事件,③④不是互斥事件. 题型一 事件关系的判断 例1 (1)从1,2,3,…,7这7个数中任取两个数,其中: ①恰有一个是偶数和恰有一个是奇数; ②至少有一个是奇数和两个都是奇数; ③至少有一个是奇数和两个都是偶数; ④至少有一个是奇数和至少有一个是偶数. 上述事件中,是对立事件的是________. (2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)+P(B)=1”,则甲是乙的____________条件. 答案 (1)③ (2)充分不必要 解析 (1)③中“至少有一个是奇数”即“两个奇数或一奇一偶”,而从1~7中任取两个数根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件. (2)若事件A与事件B是对立事件,则A∪B为必然事件,再由概率的加法公式得P(A)+P(B) =1.设掷一枚硬币3次,事件A:“至少出现一次正面”,事件B:“3次出现正面”,则P(A)=,P(B)=,满足P(A)+P(B)=1,但A,B不是对立事件. (3)(2016·镇江模拟)某城市有甲、乙两种报纸供居民订阅,记事件A为“只订甲报纸”,事件B为“至少订一种报纸”,事件C为“至多订一种报纸”,事件D为“不订甲报纸”,事件E为“一种报纸也不订”.判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件. ①A与C;②B与E;③B与C;④C与E. 解 ①由于事件C“至多订一种报纸”中有可能“只订甲报纸”,即事件A与事件C有可能同时发生,故A与C不是互斥事件. ②事件B“至少订一种报纸”与事件E“一种报纸也不订”是不可能同时发生的,故B与E是互斥事件.由于事件B不发生可导致事件E一定发生,且事件E不发生会导致事件B一定发生,故B与E还是对立事件. ③事件B“至少订一种报纸”中有这些可能:“只订甲报纸”、“只订乙报纸”、“订甲、乙两种报纸”,事件C“至多订一种报纸”中有这些可能:“一种报纸也不订”、“只订甲报纸”、“只订乙报纸”,由于这两个事件可能同时发生,故B与C不是互斥事件. ④由③的分析,事件E“一种报纸也不订”是事件C的一种可能,即事件C与事件E有可能同时发生,故C与E不是互斥事件. 思维升华 (1)准确把握互斥事件与对立事件的概念 ①互斥事件是不可能同时发生的事件,但可以同时不发生. ②对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生. (2)判断互斥、对立事件的方法 判断互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两事件为对立事件,对立事件一定是互斥事件. 下列命题: ①将一枚硬币抛两次,设事件M:“两次出现正面”,事件N:“只有一次出现反面”,则事件M与N互为对立事件; ②若事件A与B互为对立事件,则事件A与B为互斥事件; ③若事件A与B为互斥事件,则事件A与B为对立事件; ④若事件A与B互为对立事件,则事件A∪B为必然事件. 其中,真命题是________. 答案 ②④ 解析 对①,将一枚硬币抛两次,共出现{正,正},{正,反},{反,正},{反,反} 四种结果,则事件M与N是互斥事件,但不是对立事件,故①错;对②,对立事件首先是互斥事件,故②正确;对③,互斥事件不一定是对立事件,如①中两个事件,故③错;对④,事件A、B为对立事件,则在一次试验中A、B一定有一个要发生,故④正确. 题型二 随机事件的频率与概率 例2 (2016·全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下: 上年度出险次数 0 1 2 3 4 ≥5 保费 0.85a a 1.25a 1.5a 1.75a 2a 随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表: 出险次数 0 1 2 3 4 ≥5 频数 60 50 30 30 20 10 (1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值; (2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值; (3)求续保人本年度的平均保费的估计值. 解 (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55. (2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3. (3)由所给数据得 保费 0.85a a 1.25a 1.5a 1.75a 2a 频率 0.30 0.25 0.15 0.15 0.10 0.05 调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5a. 因此,续保人本年度平均保费的估计值为1.192 5a. 思维升华 (1)概率与频率的关系 频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率作为随机事件概率的估计值. (2)随机事件概率的求法 利用概率的统计定义求事件 的概率,即通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数,这个常数就是概率. (2015·北京)某超市随机选取1 000位顾客,记录了他们购买甲、乙、丙、丁四种商品的情况,整理成如下统计表,其中“√”表示购买,“×”表示未购买. 商品 顾客人数 甲 乙 丙 丁 100 √ × √ √ 217 × √ × √ 200 √ √ √ × 300 √ × √ × 85 √ × × × 98 × √ × × (1)估计顾客同时购买乙和丙的概率; (2)估计顾客在甲、乙、丙、丁中同时购买3种商品的概率; (3)如果顾客购买了甲,则该顾客同时购买乙、丙、丁中哪种商品的可能性最大? 解 (1)从统计表可以看出,在这1 000位顾客中有200位顾客同时购买了乙和丙, 所以顾客同时购买乙和丙的概率可以估计为=0.2. (2)从统计表可以看出,在这1 000位顾客中,有100位顾客同时购买了甲、丙、丁,另有200位顾客同时购买了甲、乙、丙,其他顾客最多购买了2种商品. 所以顾客在甲、乙、丙、丁中同时购买3种商品的概率可以估计为=0.3. (3)与(1)同理,可得: 顾客同时购买甲和乙的概率可以估计为=0.2, 顾客同时购买甲和丙的概率可以估计为=0.6, 顾客同时购买甲和丁的概率可以估计为=0.1. 所以,如果顾客购买了甲,则该顾客同时购买丙的可能性最大. 题型三 互斥事件、对立事件的概率 命题点1 互斥事件的概率 例3 袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率是,得到黑球或黄球的概率是,得到黄球或绿球的概率也是,试求得到黑球、黄球和绿球的概率各是多少? 解 方法一 从袋中选取一个球,记事件“摸到红球”“摸到黑球”“摸到黄球”“摸到绿球”分别为A,B,C,D,则有 P(A)=,P(B∪C)=P(B)+P(C)=, P(C∪D)=P(C)+P(D)=,P(B∪C∪D)=P(B)+P(C)+P(D)=1-P(A)=1-=,解得P(B)=,P(C)=,P(D)=,因此得到黑球、黄球、绿球的概率分别是,,. 方法二 设红球有n个,则=,所以n=4,即红球有4个. 又得到黑球或黄球的概率是,所以黑球和黄球共5个. 又总球数是12,所以绿球有12-4-5=3(个). 又得到黄球或绿球的概率也是,所以黄球和绿球共5个,而绿球有3个,所以黄球有5-3=2(个). 所以黑球有12-4-3-2=3(个). 因此得到黑球、黄球、绿球的概率分别是 =,=,=. 命题点2 对立事件的概率 例4 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖,一等奖,二等奖的事件分别为A,B,C,求: (1)P(A),P(B),P(C); (2)1张奖券的中奖概率; (3)1张奖券不中特等奖且不中一等奖的概率. 解 (1)P(A)=,P(B)==, P(C)==. 故事件A,B,C的概率分别为,,. (2)1张奖券中奖包含中特等奖,一等奖,二等奖. 设“1张奖券中奖”这个事件为M,则M=A∪B∪C. ∵A,B,C两两互斥, ∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C) ==. 故1张奖券的中奖概率为. (3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件, ∴P(N)=1-P(A∪B)=1-=. 故1张奖券不中特等奖且不中一等奖的概率为. 思维升华 求复杂事件的概率的两种方法 求概率的关键是分清所求事件是由哪些事件组成的,求解时通常有两种方法: (1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率; (2)若将一个较复杂的事件转化为几个互斥事件的和事件时,需要分类太多,而其对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率. 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下: 排队人数 0 1 2 3 4 5人及5人以上 概率 0.1 0.16 0.3 0.3 0.1 0.04 求:(1)至多2人排队等候的概率; (2)至少3人排队等候的概率. 解 (1)记“无人排队等候”为事件A,“1人排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A、B、C、D、E、F彼此互斥. 记“至多2人排队等候”为事件G,则G=A+B+C, 所以P(G)=P(A+B+C)=P(A)+P(B)+P(C) =0.1+0.16+0.3=0.56. (2)方法一 记“至少3人排队等候”为事件H, 则H=D+E+F, 所以P(H)=P(D+E+F)=P(D)+P(E)+P(F)=0.3+0.1+0.04=0.44. 方法二 记“至少3人排队等候”为事件H,则其对立事件为事件G, 所以P(H)=1-P(G)=0.44. 21.用正难则反思想求互斥事件的概率 典例 (14分)某超市为了了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示. 一次购物量 1至4件 5至8件 9至12件 13至16件 17件及以上 顾客数(人) x 30 25 y 10 结算时间(分钟/人) 1 1.5 2 2.5 3 已知这100位顾客中一次购物量超过8件的顾客占55%. (1)确定x,y的值,并估计顾客一次购物的结算时间的平均值; (2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 思想方法指导 若某一事件包含的基本事件多,而它的对立事件包含的基本事件少,则可用“正难则反”思想求解. 规范解答 解 (1)由已知得25+y+10=55,x+30=45, 所以x=15,y=20.[2分] 该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为 =1.9(分钟).[7分] (2)记A为事件“一位顾客一次购物的结算时间不超过2分钟”,A1,A2分别表示事件“该顾客一次购物的结算时间为2.5分钟”,“该顾客一次购物的结算时间为3分钟”,将频率视为概率得 P(A1)==,P(A2)==.[10分] P(A)=1-P(A1)-P(A2)=1--=.[12分] 故一位顾客一次购物的结算时间不超过2分钟的概率为.[14分] 1.(2016·宿迁模拟)甲、乙两人下棋,若甲获胜的概率为,甲、乙下成和棋的概率为,则乙不输棋的概率为________. 答案 解析 乙不输棋的概率为1-=. 2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球. 在上述事件中,是对立事件的为________. 答案 ② 解析 至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件. 3.(2016·镇江模拟)从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的产品不是一等品”的概率为________. 答案 0.35 解析 ∵“抽到的产品不是一等品”与事件A是对立事件,∴所求概率P=1-P(A)=0.35. 4.(2016·常州模拟)在一次随机试验中,彼此互斥的事件A,B,C,D的概率分别是0.2,0.2,0.3,0.3,则下列说法正确的是________. ①A+B与C是互斥事件,也是对立事件; ②B+C与D是互斥事件,也是对立事件; ③A+C与B+D是互斥事件,但不是对立事件; ④A与B+C+D是互斥事件,也是对立事件. 答案 ④ 解析 由于A,B,C,D彼此互斥,且A+B+C+D是一个必然事件,故其事件的关系可由如图所示的Venn图表示,由图可知,任何一个事件与其余3个事件的和事件必然是对立事件,任何两个事件的和事件与其余两个事件的和事件也是对立事件,④正确. 5.从一篮子鸡蛋中任取1个,如果其重量小于30克的概率为0.3,重量在[30,40]克的概率为0.5,那么重量不小于30克的概率为________. 答案 0.7 解析 由互斥事件概率公式知重量大于40克的概率为1-0.3-0.5=0.2, 又∵0.5+0.2=0.7,∴重量不小于30克的概率为0.7. 6.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________. 答案 0.45 解析 设区间[25,30)对应矩形的高为x,则所有矩形面积之和为1,即(0.02+0.04+0.06+0.03+x)×5=1,解得x=0.05.产品为二等品的概率为0.04×5+0.05×5=0.45. 7.在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是二级品. 其中________是必然事件;________是不可能事件;________是随机事件. 答案 ③ ② ① 8.(2016·苏州模拟)已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数: 907 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989 据此估计,该运动员三次投篮恰有两次命中的概率为________. 答案 0.25 解析 20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为= 0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25. 9.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是________________. 答案 (,] 解析 由题意可知⇒,⇒⇒查看更多
相关文章
- 当前文档收益归属上传用户
- 下载本文档